| A. | $\overrightarrow a⊥\overrightarrow e$ | B. | $\overrightarrow a⊥(\overrightarrow a-2\overrightarrow e)$ | C. | $\overrightarrow e⊥(\overrightarrow a-2\overrightarrow e)$ | D. | $(\overrightarrow a+2\overrightarrow e)⊥(\overrightarrow a-2\overrightarrow e)$ |
分析 对|$\overrightarrow{a}$-t$\overrightarrow{e}$|≥|$\overrightarrow{a}$-2$\overrightarrow{e}$|两边平方可得关于t的一元二次不等式 t2-2$\overrightarrow{a}$•$\overrightarrow{e}$t+4$\overrightarrow{a}$•$\overrightarrow{e}$-4≥0,为使得不等式恒成立,则一定有△≤0.
解答 解:已知向量$\overrightarrow{a}$≠$\overrightarrow{e}$,|$\overrightarrow{e}$|=1,
对任意t∈R,恒有|$\overrightarrow{a}$-t$\overrightarrow{e}$|≥|$\overrightarrow{a}$-2$\overrightarrow{e}$|,
即|$\overrightarrow{a}$-t$\overrightarrow{e}$|2≥|$\overrightarrow{a}$-2$\overrightarrow{e}$|2,∴t2-2$\overrightarrow{a}$•$\overrightarrow{e}$t+4$\overrightarrow{a}$•$\overrightarrow{e}$-4≥0,
即△=(2$\overrightarrow{a}$•$\overrightarrow{e}$)2-4(4$\overrightarrow{a}$•$\overrightarrow{e}$-4)≤0,
即($\overrightarrow{a}$•$\overrightarrow{e}$-2)2≤0,
∴$\overrightarrow{a}$•$\overrightarrow{e}$-2=0,$\overrightarrow{a}$•$\overrightarrow{e}$-2$\overrightarrow{e}$2=0,
∴$\overrightarrow{e}$•($\overrightarrow{a}$-2$\overrightarrow{e}$)=0,
故选C
点评 本题主要考查向量的长度即向量的模的有关问题,属于基础题.
科目:高中数学 来源: 题型:解答题
| 认为作业多 | 认为作业不多 | 总计 | |
| 喜欢玩游戏 | 20 | 10 | |
| 不喜欢玩游戏 | 2 | 8 | |
| 总计 |
| P(x2≥k) | 0.100 0.050 0.010 |
| k | 2.706 3.841 6.635 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 1 | B. | $\frac{{\sqrt{2}}}{2}$ | C. | $\frac{1}{2}$ | D. | $\frac{1}{4}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $-\frac{1}{3}\overrightarrow a+\frac{2}{3}\overrightarrow b$ | B. | $\frac{2}{3}\overrightarrow a-\frac{1}{3}\overrightarrow b$ | C. | $\frac{1}{3}\overrightarrow a-\frac{2}{3}\overrightarrow b$ | D. | $-\frac{2}{3}\overrightarrow a+\frac{1}{3}\overrightarrow b$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com