精英家教网 > 高中数学 > 题目详情
6.若向量$\overrightarrow a=(1,1)$,$\overrightarrow b=(-1,2)$,$\overrightarrow c=(1,-1)$,则$\overrightarrow c$等于(  )
A.$-\frac{1}{3}\overrightarrow a+\frac{2}{3}\overrightarrow b$B.$\frac{2}{3}\overrightarrow a-\frac{1}{3}\overrightarrow b$C.$\frac{1}{3}\overrightarrow a-\frac{2}{3}\overrightarrow b$D.$-\frac{2}{3}\overrightarrow a+\frac{1}{3}\overrightarrow b$

分析 设出$\overrightarrow{c}=x\overrightarrow{a}+y\overrightarrow{b}$,利用向量相等得到关于x,y 的方程组,关键平面向量基本定理得到所求.

解答 解:设$\overrightarrow{c}=x\overrightarrow{a}+y\overrightarrow{b}$,则(1,-1)=(x-y,x+2y),所以$\left\{\begin{array}{l}{x-y=1}\\{x+2y=-1}\end{array}\right.$,解得$\left\{\begin{array}{l}{x=\frac{1}{3}}\\{y=-\frac{2}{3}}\end{array}\right.$,
所以$\overrightarrow{c}=\frac{1}{3}\overrightarrow{a}-\frac{2}{3}\overrightarrow{b}$;
故选C.

点评 本题考查了平面向量基本定理的运用;利用向量相等得到方程组解之;体现了方程思想.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

16.已知过点A(-2,0)的直线与x=2相交于点C,过点B(2,0)的直线与x=-2相交于点D,若直线CD与圆x2+y2=4相切,则直线AC与BD的交点M的轨迹方程为$\frac{{x}^{2}}{4}$+y2=1(x≠±2).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知集合A={-2,-1,0,1,2,3},B={x|x2-2x≤0},则A∩B=(  )
A.{-1,0,1}B.{-2,-1,0,1}C.{0,1,2,3}D.{0,1,2}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.观察下列(如图)数表规律,则数2007的箭头方向是(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知正项等差数列{an}和正项等比数列{bn}满足,a5=b5,则下列关系正确的是(  )
A.a1+a9≥b1+b9B.a1+a9≤b1+b9C.a1+a9>b1+b9D.a1+a9<b1+b9

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知向量$\overrightarrow a≠\overrightarrow e$,$|\overrightarrow e|=1$,对任意t∈R,恒有$|\overrightarrow a-t\overrightarrow e|≥|\overrightarrow a-2\overrightarrow e|$,则(  )
A.$\overrightarrow a⊥\overrightarrow e$B.$\overrightarrow a⊥(\overrightarrow a-2\overrightarrow e)$C.$\overrightarrow e⊥(\overrightarrow a-2\overrightarrow e)$D.$(\overrightarrow a+2\overrightarrow e)⊥(\overrightarrow a-2\overrightarrow e)$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.正项数列{an},a1=1,前n项和Sn满足${S_n}•\sqrt{{S_{n-1}}}-{S_{n-1}}•\sqrt{S_n}=2\sqrt{{S_n}•{S_{n-1}}}(n≥2)$,则sn=$\frac{1}{(2n-1)^{2}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.设a,b∈R,复数$\frac{i-2}{1+2i}=a+bi$,则a2+b2=1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知$\overrightarrow{e_1},\overrightarrow{e_2}$为非零向量且不共线,若$k\overrightarrow{e_1}+\overrightarrow{e_2}$与$\overrightarrow{e_1}+k\overrightarrow{e_2}$共线,求k=±1.

查看答案和解析>>

同步练习册答案