精英家教网 > 高中数学 > 题目详情
17.已知集合A={-2,-1,0,1,2,3},B={x|x2-2x≤0},则A∩B=(  )
A.{-1,0,1}B.{-2,-1,0,1}C.{0,1,2,3}D.{0,1,2}

分析 求出集合B的等价条件,结合交集的定义进行判断即可.

解答 解:B={x|x2-2x≤0}={x|0≤x≤2},
则A∩B={0,1,2},
故选:D

点评 本题主要考查集合的基本运算,根据条件求出集合的等价条件是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

9.数列{an}满足a1=2,an-an-1=$\frac{1}{2^n}$(n≥2,n∈N*),则an=$\frac{5}{2}$$-\frac{1}{{2}^{n}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.在数列{an}中,已知a1=2,an+1=4an-3n+1
(1)证明:数列{an-n}是等比数列;
(2)求数列{an}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知抛物线x2=4y,直线l的方程y=-2,动点P在直线l上,过P点作抛物线的切线,切点分别为A,B,线段A,B的中点为Q
(Ⅰ)求证:直线AB恒过定点;
(Ⅱ)求Q点轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.如图,等腰直角三角形区域ABC中,∠ACB=90°,BC=AC=1百米.现准备划出一块三角形区域CDE,其中D,E均在斜边AB上,且∠DCE=45°.记三角形CDE的面积为S.
(1)①设∠BCE=θ,试用θ表示S;
②设AD=x,试用x表示S;
(2)求S的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.古诗云:远望巍巍塔七层,红光点点倍加增.共灯三百八十一,请问尖头几盏灯?(  )
A.2B.4C.3D.5

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.如图,在三棱锥VABC中,平面VAB⊥平面ABC,△VAB为等边三角形,AC⊥BC且AC=BC,O,M分别为AB,VA的中点.
(1)求证:VB∥平面MOC;
(2)求证:平面MOC⊥平面VAB.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.若向量$\overrightarrow a=(1,1)$,$\overrightarrow b=(-1,2)$,$\overrightarrow c=(1,-1)$,则$\overrightarrow c$等于(  )
A.$-\frac{1}{3}\overrightarrow a+\frac{2}{3}\overrightarrow b$B.$\frac{2}{3}\overrightarrow a-\frac{1}{3}\overrightarrow b$C.$\frac{1}{3}\overrightarrow a-\frac{2}{3}\overrightarrow b$D.$-\frac{2}{3}\overrightarrow a+\frac{1}{3}\overrightarrow b$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.曲线y=3x5-5x3共有2个极值点.

查看答案和解析>>

同步练习册答案