分析 (1)由an+1=4an-3n+1,可得:an+1-(n+1)=4(an-n),即可证明数列{an-n}是等比数列.
(2)由(1)可得:an-n=4n-1,即an=n+4n-1,再利用等差数列与等比数列的求和公式即可得出.
解答 (1)证明:由an+1=4an-3n+1,可得:an+1-(n+1)=4(an-n),a1-1=1.
∴数列{an-n}是等比数列,首项为1,公比为4.
(2)解:由(1)可得:an-n=4n-1,即an=n+4n-1,
∴Sn=$\frac{n(n+1)}{2}$+$\frac{{4}^{n}-1}{4-1}$.
即${S_n}=\frac{{{4^n}-1}}{3}+\frac{(n+1)n}{2}$.
点评 本题考查了等差数列与等比数列的定义、通项公式与求和公式,考查了推理能力与计算能力,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
| 风能分类 | 一类风区 | 二类风区 |
| 平均风速m/s | 8.5---10 | 6.5---8.5 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 144 | B. | 48 | C. | 24 | D. | 13 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | {-1,0,1} | B. | {-2,-1,0,1} | C. | {0,1,2,3} | D. | {0,1,2} |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com