精英家教网 > 高中数学 > 题目详情
12.如图,等腰直角三角形区域ABC中,∠ACB=90°,BC=AC=1百米.现准备划出一块三角形区域CDE,其中D,E均在斜边AB上,且∠DCE=45°.记三角形CDE的面积为S.
(1)①设∠BCE=θ,试用θ表示S;
②设AD=x,试用x表示S;
(2)求S的最大值.

分析 (1)①等腰直角三角形区域ABC中,∠ACB=90°,BC=AC=100米,∠ACB=∠ABC=45°,由正弦定理表示CD和CE,即可用θ表示S;
②设AD=x,利用正弦定理把x与∠BCE=θ建立关系,带入①可得x表示S
(2)利用(1)中①的表达式,根据辅助角公式化简后,利用三角函数的有界限可得S的最大值.

解答 解:由题意,∠ACB=90°,BC=AC=100米,∠ACB=∠ABC=45°,
(1)①设∠BCE=θ(0≤θ≤45°),$∠CEB=π-\frac{π}{4}-θ=\frac{3π}{4}-θ$,$∠CDA=θ+\frac{π}{2}$.
在三角形ACD和三角形CBE中,由正弦定理:得:$\frac{CE}{sin45°}=\frac{1}{sin(\frac{3}{4}π-θ)}$
$\frac{CD}{sin45°}=\frac{1}{sin(θ+\frac{π}{2})}$
∴CE=$\frac{1}{sinθ+cosθ}$,CD=$\frac{\sqrt{2}}{2cosθ}$
那么:三角形CDE的面积为S=$\frac{1}{2}$CD•CE•sin45°=$\frac{1}{2}×$$\frac{1}{sinθ+cosθ}$×$\frac{\sqrt{2}}{2cosθ}$×$\frac{\sqrt{2}}{2}$=$\frac{1}{4sinθcosθ+4co{s}^{2}θ}$
②设AD=x,∠BCE=θ,那么∠ACD=$\frac{π}{4}$-θ.
在三角形ACD中,由正弦定理:得:$\frac{1}{sin(θ+\frac{π}{2})}=\frac{x}{sin(\frac{π}{4}-θ)}$
化简可得:x=$\frac{\sqrt{2}}{2}-\frac{\sqrt{2}}{2}tanθ$.
得:tanθ=1$-\sqrt{2}$x.
由①的表达式化简可得:S=$\frac{si{n}^{2}θ+co{s}^{2}θ}{4sinθcosθ+4co{s}^{2}θ}$=$\frac{ta{n}^{2}θ+1}{4tanθ+4}$
将tanθ=1$-\sqrt{2}$x带入上式,可得S=$\frac{(1-\sqrt{2}x)^{2}+1}{4(1-\sqrt{2}x)+4}$=$\frac{2{x}^{2}-2\sqrt{2}x+2}{4(2-\sqrt{2}x)}$=$\frac{{x}^{2}-\sqrt{2}x+1}{4-2\sqrt{2}x}$.
(2)由①的表达式S=$\frac{1}{4sinθcosθ+4co{s}^{2}θ}$
化简可得:S=$\frac{1}{2sin2θ+2(1+cos2θ)}$=$\frac{1}{2\sqrt{2}sin(2θ+\frac{π}{4})+2}$.
∵0≤θ≤45°,
∴$\frac{π}{4}≤2θ+\frac{π}{4}≤\frac{3π}{4}$.
可得:sin(2θ$+\frac{π}{4}$)∈[$\frac{\sqrt{2}}{2},1$].
∴Smax=$\frac{1}{2\sqrt{2}×\frac{\sqrt{2}}{2}+2}=\frac{1}{4}$.

点评 本题主要考查三角函数的图象和性质,利用三角函数公式将函数进行化简是解决本题的关键.属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

4.已知x=-3,x=1是函数f(x)=sin(ωx+φ)(ω>0)的两个相邻的极值点,且f(x)在x=-1处的导数f'(-1)>0,则f(0)=(  )
A.0B.$\frac{1}{2}$C.$\frac{{\sqrt{3}}}{3}$D.$\frac{{\sqrt{2}}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.△ABC的面积是10,内角A,B,C所对边长分别为a,b,c,$cosA=\frac{12}{13}$,则$\overrightarrow{AB}•\overrightarrow{AC}$=(  )
A.144B.48C.24D.13

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.在△ABC中,若a=6,b=8,c=$2\sqrt{37}$,则△ABC的最大角的度数为120°.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知点A(1,$\sqrt{2}$)是离心率为$\frac{\sqrt{2}}{2}$的椭圆C:$\frac{x^2}{b^2}+\frac{y^2}{a^2}=1$(a>b>0)上的一点,斜率为$\sqrt{2}$的直线BD交椭圆C于B、D两点,且A、B、D三点不重合
( I)求椭圆C的方程;
( II)求证:直线AB,AD的斜率之和为定值
( III)△ABD面积是否存在最大值?若存在,求出这个最大值;若不存在,请说明理由?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知集合A={-2,-1,0,1,2,3},B={x|x2-2x≤0},则A∩B=(  )
A.{-1,0,1}B.{-2,-1,0,1}C.{0,1,2,3}D.{0,1,2}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知定义域为R的函数f(x)=a+$\frac{2bx+3sinx+bxcosx}{2+cosx}$(a,b∈R)有最大值和最小值,且最大值与最小值之和为6,则3a-2b=(  )
A.7B.8C.9D.10

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知正项等差数列{an}和正项等比数列{bn}满足,a5=b5,则下列关系正确的是(  )
A.a1+a9≥b1+b9B.a1+a9≤b1+b9C.a1+a9>b1+b9D.a1+a9<b1+b9

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知函数$f(x)=({m+\frac{1}{m}})lnx+\frac{1}{x}-x$,(其中常数m>0)
(1)当m=2时,求f(x)的极大值;
(2)试讨论f(x)在区间(0,1)上的单调性.

查看答案和解析>>

同步练习册答案