精英家教网 > 高中数学 > 题目详情
16.已知$m=a+\frac{1}{a-2}(a>2)$,$n={2^{2-{b^2}}}(b≠0)$,m的最小值为:4,则m,n之间的大小关系为m>n.

分析 利用基本不等式的性质、指数函数的单调性即可得出.

解答 解:∵$m=a+\frac{1}{a-2}(a>2)$,
∴m=a-2+$\frac{1}{a-2}$+2≥2$\sqrt{(a-2)•\frac{1}{a-2}}$+2=4,当且仅当a=4时取等号.
∵$n={2^{2-{b^2}}}(b≠0)$,∴n<22=4.
故答案为:4,m>n.

点评 本题考查了基本不等式的性质、指数函数的单调性,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

6.已知数列{an}的通项公式是an=$\left\{\begin{array}{l}{2^{-n}}\;\;\;\;\;\;(n是奇数)\\ \frac{1}{{2n+{n^2}}}\;\;(n是偶数)\end{array}$,则它的前4项和为$\frac{19}{24}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知向量$\overrightarrow a$=($\sqrt{3}$sin3x,-y),$\overrightarrow b$=(m,cos3x-m)(m∈R),且$\overrightarrow a$+$\overrightarrow b$=$\overrightarrow 0$.设y=f(x).
(1)求f(x)的表达式,并求函数f(x)在[${\frac{π}{18}$,$\frac{π}{3}}$]上图象最低点M的坐标.
(2)在△ABC中,f(A)=-$\sqrt{3}$,且A>$\frac{4}{9}$π,D为边BC上一点,AC=$\sqrt{3}$DC,BD=2DC,且AD=2$\sqrt{2}$,求线段DC的长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知$tanα=\frac{1}{2},sin(α+β)=-\frac{{\sqrt{2}}}{10}$,其中α,β∈(0,π).
(1)求cosβ的值;
(2)求α-β的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知向量$\overrightarrow a≠\overrightarrow e$,$|\overrightarrow e|=1$,对任意t∈R,恒有$|\overrightarrow a-t\overrightarrow e|≥|\overrightarrow a-2\overrightarrow e|$,则(  )
A.$\overrightarrow a⊥\overrightarrow e$B.$\overrightarrow a⊥(\overrightarrow a-2\overrightarrow e)$C.$\overrightarrow e⊥(\overrightarrow a-2\overrightarrow e)$D.$(\overrightarrow a+2\overrightarrow e)⊥(\overrightarrow a-2\overrightarrow e)$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.若$x\;{(1-mx)^{\;4}}={a_1}\;x+{a_2}\;{x^2}+{a_3}\;{x^3}+{a_4}\;{x^4}+{a_5}\;{x^5}$,其中a2=-6,则实数m=$\frac{3}{2}$;a1+a3+a5=$\frac{313}{16}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知集合A={log2x,4,8},B={4,5}.若A∪B={1,4,5,8},则实数x的值为2,A∩B={4};令U=A∪B,则∁UA={5}.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知函数f(x)=ex+ax,(a∈R),其图象与x轴交于A(x1,0),B(x2,0)两点,且x1<x2
(1)证明:a<-e;
(2)证明:$f'({\frac{{{x_1}+{x_2}}}{2}})<0$;(其中f'(x)为f(x)的导函数).
(3)设点C在函数f(x)的图象上,且△ABC为等边三角形,记$\sqrt{\frac{x_2}{x_1}}=t$,求$(t-1)(a+\sqrt{3})$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.如图,等边△ABC与直角梯形ABDE所在平面垂直,BD∥AE,AE⊥AB,BC=BD=2AE=2,O为AB的中点.
(1)证明:CO⊥DE;
(2)求二面角C-DE-A的大小.

查看答案和解析>>

同步练习册答案