精英家教网 > 高中数学 > 题目详情
7.已知向量$\overrightarrow a$=($\sqrt{3}$sin3x,-y),$\overrightarrow b$=(m,cos3x-m)(m∈R),且$\overrightarrow a$+$\overrightarrow b$=$\overrightarrow 0$.设y=f(x).
(1)求f(x)的表达式,并求函数f(x)在[${\frac{π}{18}$,$\frac{π}{3}}$]上图象最低点M的坐标.
(2)在△ABC中,f(A)=-$\sqrt{3}$,且A>$\frac{4}{9}$π,D为边BC上一点,AC=$\sqrt{3}$DC,BD=2DC,且AD=2$\sqrt{2}$,求线段DC的长.

分析 (1)根据$\overrightarrow a$+$\overrightarrow b$=$\overrightarrow 0$.用x表示y可得f(x)的表达式.即可求函数f(x)在[${\frac{π}{18}$,$\frac{π}{3}}$]上图象最低点M的坐标.
(2)根据f(A)=-$\sqrt{3}$,且A>$\frac{4}{9}$π,求出A,AC=$\sqrt{3}$DC,BD=2DC,且AD=2$\sqrt{2}$,利用余弦定理求出线段DC的长.

解答 解:(1)向量$\overrightarrow a$=($\sqrt{3}$sin3x,-y),$\overrightarrow b$=(m,cos3x-m)(m∈R),
∴$\overrightarrow a$+$\overrightarrow b$=(m+$\sqrt{3}$sin3x,-y+cos3x-m),
∵$\overrightarrow a$+$\overrightarrow b$=$\overrightarrow 0$.
m+$\sqrt{3}$sin3x=0,-y+cos3x-m=0
∴y=cos3x+$\sqrt{3}$sin3x
即y=f(x)=2sin(3x+$\frac{π}{6}$)
∴f(x)的表达式f(x)=2sin(3x+$\frac{π}{6}$)
∵x在[${\frac{π}{18}$,$\frac{π}{3}}$]上,
∴3x+$\frac{π}{6}$∈[$\frac{π}{3}$,$\frac{7π}{6}$],
当3x+$\frac{π}{6}$=$\frac{7π}{6}$时,取得最低点,此时x=$\frac{π}{3}$,y=-1.
∴函数f(x)在[${\frac{π}{18}$,$\frac{π}{3}}$]上图象最低点M的坐标为($\frac{π}{3}$,-1).
(2)由f(A)=-$\sqrt{3}$,即2sin(3A+$\frac{π}{6}$)=$-\sqrt{3}$
可得:3A+$\frac{π}{6}$=$\frac{4}{3}π$+2kπ或3A+$\frac{π}{6}$=$-\frac{π}{3}$+2kπ,k∈Z.
∵π>A>$\frac{4}{9}$π,
∴A=$\frac{π}{2}$.
∴△ABC是直角三角形.
AC=$\sqrt{3}$DC,BD=2DC,
设DC=x,则AC=$\sqrt{3}$x,BD=2x,BC=3x.
可得:AB=$\sqrt{6}x$.
在三角形ADB和三角形ADC中,由余弦定理:可得cos∠BDA=$\frac{4{x}^{2}+8-6{x}^{2}}{8\sqrt{2}x}$
cos∠ADC=$\frac{{x}^{2}+8-3{x}^{2}}{4\sqrt{2}x}$,
∵∠ADC+∠BDA=π.
∴$\frac{4{x}^{2}+8-6{x}^{2}}{8\sqrt{2}x}$=-$\frac{{x}^{2}+8-3{x}^{2}}{4\sqrt{2}x}$,
解得:x=$2\sqrt{3}$.
∴线段DC的长为$2\sqrt{3}$.

点评 本题主要考查三角函数的图象和性质以及余弦定理的运用,利用三角函数公式将函数进行化简是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

19.若函数f(x)=x3-6bx+3b在(0,1)内有极小值,则实数b的取值范围是(  )
A.(0,$\frac{1}{2}$)B.(-∞,1)C.(0,+∞)D.(0,1)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.数列{an}中,a1=3,且an+1=an-2(n∈N*),则a8=(  )
A.17B.19C.-13D.-11

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.在△ABC中,sinA+$\sqrt{2}$sinB=2sinC,b=3,当C角最大时,△ABC的面积是多少.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.古诗云:远望巍巍塔七层,红光点点倍加增.共灯三百八十一,请问尖头几盏灯?(  )
A.2B.4C.3D.5

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知函数f(x)的导函数为f'(x),且满足f(x)=2xf'(1)+lnx,则$f'(\frac{1}{e})$=(  )
A.$\frac{1}{e}-2$B.e-2C.-1D.e

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知正数a,b满足a2+b2=1,则ab的最大值为(  )
A.1B.$\frac{{\sqrt{2}}}{2}$C.$\frac{1}{2}$D.$\frac{1}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知$m=a+\frac{1}{a-2}(a>2)$,$n={2^{2-{b^2}}}(b≠0)$,m的最小值为:4,则m,n之间的大小关系为m>n.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.若直线ax+2y+6=0和直线x+a(a+1)y+a2-1=0垂直,则a=0或$-\frac{3}{2}$.

查看答案和解析>>

同步练习册答案