精英家教网 > 高中数学 > 题目详情
1.若$x\;{(1-mx)^{\;4}}={a_1}\;x+{a_2}\;{x^2}+{a_3}\;{x^3}+{a_4}\;{x^4}+{a_5}\;{x^5}$,其中a2=-6,则实数m=$\frac{3}{2}$;a1+a3+a5=$\frac{313}{16}$.

分析 $x\;{(1-mx)^{\;4}}={a_1}\;x+{a_2}\;{x^2}+{a_3}\;{x^3}+{a_4}\;{x^4}+{a_5}\;{x^5}$,则x(1-mx)4=x$(1-4mx+{∁}_{4}^{2}{m}^{2}{x}^{2}+…)$,可得-4m=a2=-6,解得m=$\frac{3}{2}$,对$x\;{(1-mx)^{\;4}}={a_1}\;x+{a_2}\;{x^2}+{a_3}\;{x^3}+{a_4}\;{x^4}+{a_5}\;{x^5}$,分别令x=1时,x=-1时,即可得出.

解答 解:$x\;{(1-mx)^{\;4}}={a_1}\;x+{a_2}\;{x^2}+{a_3}\;{x^3}+{a_4}\;{x^4}+{a_5}\;{x^5}$,
则x(1-mx)4=x$(1-4mx+{∁}_{4}^{2}{m}^{2}{x}^{2}+…)$,则-4m=a2=-6,解得m=$\frac{3}{2}$.
对:$x\;{(1-mx)^{\;4}}={a_1}\;x+{a_2}\;{x^2}+{a_3}\;{x^3}+{a_4}\;{x^4}+{a_5}\;{x^5}$,
令x=1时,$(1-\frac{3}{2})^{4}$=a1+a2+a3+a4+a5
x=-1时,-$(1+\frac{3}{2})^{4}$=-a1+a2-a3+a4-a5
∴2(a1+a3+a5)=$(\frac{1}{2})^{4}$+$(\frac{5}{2})^{4}$,
解得a1+a3+a5=$\frac{313}{16}$.
故答案为:$\frac{3}{2}$,$\frac{313}{16}$.

点评 本题考查了二项式定理的性质、方程思想方法,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

11.若不等式组$\left\{\begin{array}{l}{x+a≥0}\\{4-2x>x-2}\end{array}\right.$有解,则实数a的取值范围是(  )
A.a≥-2B.a<-2C.a≤-2D.a>-2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知函数f(x)的导函数为f'(x),且满足f(x)=2xf'(1)+lnx,则$f'(\frac{1}{e})$=(  )
A.$\frac{1}{e}-2$B.e-2C.-1D.e

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.化简$\sqrt{cos2+{{sin}^2}1}$的结果是(  )
A.-cos1B.cos1C.|cos2|D.sin2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知$m=a+\frac{1}{a-2}(a>2)$,$n={2^{2-{b^2}}}(b≠0)$,m的最小值为:4,则m,n之间的大小关系为m>n.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知函数$f(x)=cos(2x+\frac{π}{4})(x∈R)$,为了得到函数g(x)=cos2x的图象,只要将y=f(x)的图象(  )
A.向左平移$\frac{π}{4}$个单位长度B.向右平移$\frac{π}{4}$个单位长度
C.向左平移$\frac{π}{8}$个单位长度D.向右平移$\frac{π}{8}$个单位长度

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.在△ABC中,2asinB=$\sqrt{3}$b,
(Ⅰ)求角A的大小;
(Ⅱ)当角A为锐角,且BC=2时,求△ABC周长的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.在平面直角坐标系xOy中,曲线C1的参数方程为$\left\{\begin{array}{l}{x=4cosθ}\\{y=3sinθ}\end{array}\right.$(θ为参数),以坐标原点O为极点,x轴的正半轴为极轴建立极坐标系,得曲线C2的极坐标方程为ρ+6sinθ-8cosθ=0(ρ≥0).
(1)化曲线C1的参数方程为普通方程,化曲线C2的极坐标方程为直角坐标方程;
(2)直线l:$\left\{\begin{array}{l}{x=2+t}\\{y=-\frac{3}{2}+λt}\end{array}\right.$(t为参数)过曲线C1与y轴负半轴的交点,求与直线l平行且与曲线C2相切的直线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.在三棱锥P-ABC中,PB⊥AC,PB=9,AC=6,G为△PAC的重心,过点G作三棱锥的一个截面,使截面平行于直线PB和AC,则截面的面积为12.

查看答案和解析>>

同步练习册答案