10£®ÔÚÆ½ÃæÖ±½Ç×ø±êϵxOyÖУ¬ÇúÏßC1µÄ²ÎÊý·½³ÌΪ$\left\{\begin{array}{l}{x=4cos¦È}\\{y=3sin¦È}\end{array}\right.$£¨¦ÈΪ²ÎÊý£©£¬ÒÔ×ø±êÔ­µãOΪ¼«µã£¬xÖáµÄÕý°ëÖáΪ¼«ÖὨÁ¢¼«×ø±êϵ£¬µÃÇúÏßC2µÄ¼«×ø±ê·½³ÌΪ¦Ñ+6sin¦È-8cos¦È=0£¨¦Ñ¡Ý0£©£®
£¨1£©»¯ÇúÏßC1µÄ²ÎÊý·½³ÌΪÆÕͨ·½³Ì£¬»¯ÇúÏßC2µÄ¼«×ø±ê·½³ÌΪֱ½Ç×ø±ê·½³Ì£»
£¨2£©Ö±Ïßl£º$\left\{\begin{array}{l}{x=2+t}\\{y=-\frac{3}{2}+¦Ët}\end{array}\right.$£¨tΪ²ÎÊý£©¹ýÇúÏßC1ÓëyÖḺ°ëÖáµÄ½»µã£¬ÇóÓëÖ±ÏßlƽÐÐÇÒÓëÇúÏßC2ÏàÇеÄÖ±Ïß·½³Ì£®

·ÖÎö £¨1£©ÓÉÇúÏßC1µÄ²ÎÊý·½³ÌÏûÈ¥²ÎÊý¦È£¬ÄÜÇó³öÇúÏßC1µÄÆÕͨ·½³Ì£»ÇúÏßC2µÄ¼«×ø±ê·½³Ìת»¯Îª¦Ñ2+6¦Ñsin¦È-8¦Ñcos¦È=0£¬ÓÉ´ËÄÜÇó³öÇúÏßC2µÄÖ±½Ç×ø±ê·½³Ì£®
£¨2£©ÓÉÇúÏßC1µÄ·½³Ì$\frac{x^2}{16}+\frac{y^2}{9}=1$£¬ÄÜÇó³öÇúÏßC1ÓëyÖḺ°ëÖáµÄ½»µã£¬´Ó¶øÇó³öÖ±ÏßlµÄ·½³Ì£¬ÉèÓëÖ±ÏßlƽÐÐÇÒÓëÇúÏßC2ÏàÇеÄÖ±Ïß·½³ÌΪ3x-4y+m=0£¬ÀûÓõ㵽ֱÏߵľàÀ빫ʽÄÜÇó³öÓëÖ±ÏßlƽÐÐÇÒÓëÇúÏßC2ÏàÇеÄÖ±Ïß·½³Ì£®

½â´ð ½â£º£¨1£©ÓÉÇúÏßC1µÄ²ÎÊý·½³ÌΪ$\left\{{\begin{array}{l}{x=4cos¦È}\\{y=3sin¦È}\end{array}}\right.$£¨¦ÈΪ²ÎÊý£©£¬
ÏûÈ¥²ÎÊý¦È»¯ÎªÆÕͨ·½³Ì$\frac{x^2}{16}+\frac{y^2}{9}=1$£»
ÓÉÇúÏßC2µÄ¼«×ø±ê·½³ÌΪ¦Ñ+6sin¦È-8cos¦È=0£¨¦Ñ¡Ý0£©µÃ¦Ñ2+6¦Ñsin¦È-8¦Ñcos¦È=0£¬
»¯ÎªÖ±½Ç×ø±ê·½³Ìx2+y2+6y-8x=0£¬¼´£¨x-4£©2+£¨y+3£©2=25£®
£¨2£©ÓÉÇúÏßC1µÄ·½³Ì$\frac{x^2}{16}+\frac{y^2}{9}=1$£¬
Áîx=0µÃy=¡À3£¬¡àÇúÏßC1ÓëyÖḺ°ëÖáµÄ½»µãΪ£¨0£¬-3£©£¬
¡ßÖ±Ïßl£º$\left\{\begin{array}{l}{x=2+t}\\{y=-\frac{3}{2}+¦Ët}\end{array}\right.$£¨tΪ²ÎÊý£©¹ýµã£¨0£¬-3£©£¬
¡à$\left\{{\begin{array}{l}{0=2+t}\\{-3=-\frac{3}{2}+¦Ët}\end{array}}\right.$£¬½âµÃ$\left\{{\begin{array}{l}{t=-2}\\{¦Ë=\frac{3}{4}}\end{array}}\right.$£¬
¡àÖ±ÏßlµÄ·½³ÌΪ3x-4y-12=0£®
ÉèÓëÖ±ÏßlƽÐÐÇÒÓëÇúÏßC2ÏàÇеÄÖ±Ïß·½³ÌΪ3x-4y+m=0£¬
ÔòÔ²ÐÄC2£¨4£¬-3£©µ½Ö±ÏßlµÄ¾àÀëd=r£¬¼´$\frac{|3¡Á4-4¡Á£¨-3£©+m|}{{\sqrt{{3^2}+{4^2}}}}=5$£¬
»¯Îª|m+24|=25£¬½âµÃm=1»ò-49£¬
¡àÓëÖ±ÏßlƽÐÐÇÒÓëÇúÏßC2ÏàÇеÄÖ±Ïß·½³ÌΪ3x-4y+1=0»ò3x-4y-49=0£®

µãÆÀ ±¾Ì⿼²éÇúÏßµÄÖ±½Ç×ø±ê·½³ÌµÄÇ󷨣¬¿¼²éÖ±Ïß·½³ÌµÄÇ󷨣¬¿¼²é¼«×ø±ê·½³Ì¡¢Ö±½Ç×ø±ê·½³Ì¡¢²ÎÊý·½³ÌµÄ»¥»¯¡¢Ô²µÄÐÔÖÊ¡¢Ö±ÏßÓëÔ²ÏàÇС¢µãµ½Ö±ÏߵľàÀ빫ʽµÈ»ù´¡ÖªÊ¶£¬¿¼²éÍÆÀíÂÛÖ¤ÄÜÁ¦¡¢ÔËËãÇó½âÄÜÁ¦£¬¿¼²é»¯¹éÓëת»¯Ë¼Ïë¡¢º¯ÊýÓë·½³Ì˼Ï룬ÊÇÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

20£®ÒÑÖªa¡ÊR£¬½â¹ØÓÚxµÄ²»µÈʽx2-£¨a+2£©x+2a¡Ý0£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

1£®Èô$x\;{£¨1-mx£©^{\;4}}={a_1}\;x+{a_2}\;{x^2}+{a_3}\;{x^3}+{a_4}\;{x^4}+{a_5}\;{x^5}$£¬ÆäÖÐa2=-6£¬ÔòʵÊým=$\frac{3}{2}$£»a1+a3+a5=$\frac{313}{16}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

18£®ÒÑÖªº¯Êý$f£¨x£©=\frac{{{e^x}+{e^{-x}}+sinx}}{{{e^x}+{e^{-x}}}}$£¬Æäµ¼º¯Êý¼ÇΪf'£¨x£©£¬Ôòf£¨2017511£©+f'£¨2017511£©+f£¨-2017511£©-f'£¨-2017511£©=£¨¡¡¡¡£©
A£®0B£®1C£®2D£®2017511

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

5£®ÒÑÖªº¯Êýf£¨x£©=ex+ax£¬£¨a¡ÊR£©£¬ÆäͼÏóÓëxÖá½»ÓÚA£¨x1£¬0£©£¬B£¨x2£¬0£©Á½µã£¬ÇÒx1£¼x2£®
£¨1£©Ö¤Ã÷£ºa£¼-e£»
£¨2£©Ö¤Ã÷£º$f'£¨{\frac{{{x_1}+{x_2}}}{2}}£©£¼0$£»£¨ÆäÖÐf'£¨x£©Îªf£¨x£©µÄµ¼º¯Êý£©£®
£¨3£©ÉèµãCÔÚº¯Êýf£¨x£©µÄͼÏóÉÏ£¬ÇÒ¡÷ABCΪµÈ±ßÈý½ÇÐΣ¬¼Ç$\sqrt{\frac{x_2}{x_1}}=t$£¬Çó$£¨t-1£©£¨a+\sqrt{3}£©$µÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

15£®ÒÑÖªÃüÌâp£ºÈôʵÊýx£¬yÂú×ãx2+y2=0£¬Ôòx£¬yȫΪ0£»ÃüÌâq£ºÈôa£¾b£¬Ôò$\frac{1}{a}$£¼$\frac{1}{b}$£¬¸ø³öÏÂÁÐËĸöÃüÌ⣺¢Ùp¡Äq£»¢Úp¡Åq£»¢Û©Vp£»¢Ü©Vq£®
ÆäÖÐÕæÃüÌâÊǢڢܣ®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

2£®ÒÑÖªÍÖÔ²C£º$\frac{{y}^{2}}{{a}^{2}}$+$\frac{{x}^{2}}{{b}^{2}}$=1£¨a£¾b£¾0£©µÄÉÏϽ¹µã·Ö±ðΪF1£¬F2ÀëÐÄÂÊΪ$\frac{1}{2}$£¬PΪCÉ϶¯µã£¬ÇÒÂú×ã$\overrightarrow{{F}_{2}P}$=¦Ë$\overrightarrow{PQ}$£¨¦Ë£¾0£©£¬|$\overrightarrow{PQ}$|=|$\overrightarrow{P{F}_{1}}$|£¬¡÷QF1F2Ãæ»ýµÄ×î´óֵΪ4£®
£¨¢ñ£©ÇóQµã¹ì¼£EµÄ·½³ÌºÍÍÖÔ²CµÄ·½³Ì£»
£¨¢ò£©Ö±Ïßy=kx+m£¨m£¾0£©ÓëÍÖÔ²CÏàÇÐÇÒÓëÇúÏßE½»ÓÚM£¬NÁ½µã£¬Çó|MN|µÄȡֵ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

19£®ÔÚÊýÁÐ{an}ÖУ¬a1=1£¬an=$\frac{n-1}{n}$an-1£¨n¡Ý2£©£¬ÔòͨÏʽanµÈÓÚ£¨¡¡¡¡£©
A£®$\frac{n-1}{n}$B£®$\frac{1}{n}$C£®$\frac{n}{n-1}$D£®$\frac{n+1}{n}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

20£®ÒÑÖª¼¯ºÏ$A=\left\{{\left.{x¡ÊZ}\right|\frac{4-x}{x+2}¡Ý0}\right\}$£¬$B=\left\{{\left.x\right|\frac{1}{4}¡Ü{2^x}¡Ü4}\right\}$£¬ÔòA¡ÉB=£¨¡¡¡¡£©
A£®{x|-1¡Üx¡Ü2}B£®{-1£¬0£¬1£¬2}C£®{-2£¬-1£¬0£¬1£¬2}D£®{0£¬1£¬2}

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸