精英家教网 > 高中数学 > 题目详情
20.已知集合$A=\left\{{\left.{x∈Z}\right|\frac{4-x}{x+2}≥0}\right\}$,$B=\left\{{\left.x\right|\frac{1}{4}≤{2^x}≤4}\right\}$,则A∩B=(  )
A.{x|-1≤x≤2}B.{-1,0,1,2}C.{-2,-1,0,1,2}D.{0,1,2}

分析 化简集合A、B,根据交集的定义写出A∩B.

解答 解:集合$A=\left\{{\left.{x∈Z}\right|\frac{4-x}{x+2}≥0}\right\}$={x∈Z|-2<x≤4}={-1,0,1,2,3,4},
$B=\left\{{\left.x\right|\frac{1}{4}≤{2^x}≤4}\right\}$={x|-2≤x≤2},
则A∩B={-1,0,1,2}.
故选:B.

点评 本题考查了集合的化简与运算问题,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

10.在平面直角坐标系xOy中,曲线C1的参数方程为$\left\{\begin{array}{l}{x=4cosθ}\\{y=3sinθ}\end{array}\right.$(θ为参数),以坐标原点O为极点,x轴的正半轴为极轴建立极坐标系,得曲线C2的极坐标方程为ρ+6sinθ-8cosθ=0(ρ≥0).
(1)化曲线C1的参数方程为普通方程,化曲线C2的极坐标方程为直角坐标方程;
(2)直线l:$\left\{\begin{array}{l}{x=2+t}\\{y=-\frac{3}{2}+λt}\end{array}\right.$(t为参数)过曲线C1与y轴负半轴的交点,求与直线l平行且与曲线C2相切的直线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.在三棱锥P-ABC中,PB⊥AC,PB=9,AC=6,G为△PAC的重心,过点G作三棱锥的一个截面,使截面平行于直线PB和AC,则截面的面积为12.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.设函数F(x)=$\frac{f(x)}{e^x}$是定义在R上的函数,其中f(x)的导函数为f'(x),满足f'(x)<f(x)对于x∈R恒成立,则(  )
A.f(2)>e2f(0),f(2 017>e2017f(0)B.f(2)>e2f(0),f(2 017)<e2017f(0)
C.f(2)<e2f(0),f(2 017)>e2017f(0)D.f(2)<e2f(0),f(2 017)<e2017f(0)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知函数f(x)=$\frac{x-2}{{e}^{x}}$.
(1)求函数f(x)的单调区间和极值;
(2)若函数g(x)=f(6-x),求证:当x>3时,f(x)>g(x).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.焦点为F的抛物线C:y2=8x的准线与x轴交于点A,点M在抛物线C上,则当$\frac{{|{MA}|}}{{|{MF}|}}$取得最大值时,直线MA的方程为(  )
A.y=x+2或y=-x-2B.y=x+2C.y=2x+2或y=-2x+2D.y=-2x+2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.如图,点C在以AB为直径的圆O上,PA垂直于圆O所在的平面,G为△AOC的重心.
(1)求证:平面OPG⊥平面PAC;
(2)若PA=AB=2AC=2,求二面角A-OP-G的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知椭圆C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)的长轴长为2$\sqrt{2}$,且椭圆C与圆M:(x-1)2+y2=$\frac{1}{2}$的公共弦长为$\sqrt{2}$.
(1)求椭圆C的方程.
(2)经过原点作直线l(不与坐标轴重合)交椭圆于A,B两点,AD⊥x轴于点D,点E在椭圆C上,且$({\overrightarrow{AB}-\overrightarrow{EB}})•({\overrightarrow{DB}+\overrightarrow{AD}})=0$,求证:B,D,E三点共线..

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.如图,在棱长为4的正方体ABCD-A1B1C1D1中,E、F分别是AB、DD1的中点,点P是DD1上一点,且PB∥平面CEF,则四棱锥P-ABCD外接球的表面积为41π.

查看答案和解析>>

同步练习册答案