精英家教网 > 高中数学 > 题目详情
5.焦点为F的抛物线C:y2=8x的准线与x轴交于点A,点M在抛物线C上,则当$\frac{{|{MA}|}}{{|{MF}|}}$取得最大值时,直线MA的方程为(  )
A.y=x+2或y=-x-2B.y=x+2C.y=2x+2或y=-2x+2D.y=-2x+2

分析 由题意可知则当$\frac{{|{MA}|}}{{|{MF}|}}$取得最大值,则∠MAF必须取得最大值,此时AM与抛物线相切,设直线l的方程,代入抛物线方程,由△=0,考虑求得MA的方程.

解答 解:过M做MP与准线垂足,垂足为P,则$\frac{{|{MA}|}}{{|{MF}|}}$=$\frac{丨MA丨}{丨MP丨}$=$\frac{1}{cos∠AMP}$=$\frac{1}{cos∠MAF}$,则当$\frac{{|{MA}|}}{{|{MF}|}}$取得最大值,
则∠MAF必须取得最大值,此时AM与抛物线相切,
设切线方程为y=k(x+2),则$\left\{\begin{array}{l}{y=k(x+2)}\\{{y}^{2}=8x}\end{array}\right.$,ky2-8y+16k=0,
△=64-64k2=0,k2=1,则k±1,
则直线方程y=x+2或y=-x-2,
故选:A.

点评 本题考查抛物线的性质,直线与抛物线的位置关系,考查数形结合思想,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

15.已知命题p:若实数x,y满足x2+y2=0,则x,y全为0;命题q:若a>b,则$\frac{1}{a}$<$\frac{1}{b}$,给出下列四个命题:①p∧q;②p∨q;③¬p;④¬q.
其中真命题是②④.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知集合A={x|x2-6x+5≤0},B={x||2x-3|<1},则A∩B=(  )
A.(1,2)B.[1,2)C.(2,5]D.[2,5]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,则该几何体的体积为(  )
A.$\frac{2π+1}{3}$B.$\frac{4π+1}{3}$C.$\frac{2π+3}{3}$D.$\frac{2π+2}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知集合$A=\left\{{\left.{x∈Z}\right|\frac{4-x}{x+2}≥0}\right\}$,$B=\left\{{\left.x\right|\frac{1}{4}≤{2^x}≤4}\right\}$,则A∩B=(  )
A.{x|-1≤x≤2}B.{-1,0,1,2}C.{-2,-1,0,1,2}D.{0,1,2}

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知球O是正三棱锥(底面为正三角形,顶点在底面的射影为底面中心)A-BCD的外接球,BC=3,AB=2$\sqrt{3}$,点E在线段BD上,且BD=3BE,过点E作球O的截面,则所得截面圆面积的取值范围是[2π,4π].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知双曲线C1:$\frac{x^2}{4}-\frac{y^2}{3}=1$与双曲线C2:$\frac{x^2}{4}-\frac{y^2}{3}=-1$,给出下列说法,其中错误的是(  )
A.它们的焦距相等B.它们的焦点在同一个圆上
C.它们的渐近线方程相同D.它们的离心率相等

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.如图所示,在三棱柱ABC-A1B1C1中,AA1B1B为正方形,BB1C1C为菱形,B1C⊥AC1
(Ⅰ)求证:平面AA1B1B⊥平面BB1C1C;
(Ⅱ)若D是CC1中点,∠ADB是二面角A-CC1-B的平面角,求直线AC1与平面ABC所成角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.过点(1,0)且与直线x+3y-5=0平行的直线方程是(  )
A.x+3y+1=0B.x+3y-1=0C.3x-y-3=0D.3x+y-3=0

查看答案和解析>>

同步练习册答案