精英家教网 > 高中数学 > 题目详情
13.如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,则该几何体的体积为(  )
A.$\frac{2π+1}{3}$B.$\frac{4π+1}{3}$C.$\frac{2π+3}{3}$D.$\frac{2π+2}{3}$

分析 由三视图得到几何体是一个三棱锥与半个球的组合体,根据图中数据计算体积即可.

解答 解:由题意,几何体如图:
由特征数据得到体积为:$\frac{1}{3}×\frac{1}{2}×2×1×1+\frac{1}{2}×\frac{4}{3}π×{1}^{3}=\frac{1+2π}{3}$;
故选:A.

点评 本题考查了由几何体的三视图求几何体的体积;关键是正确还原几何体.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

3.若函数f(x)=ax3-x2+bx(a,b∈R).当x=3时,f(x)有极小值-9.
(1)求f(x)的解析式;
(2)若函数g(x)=f'(x)+(6m-8)x+4,h(x)=mx,当m>0时,对于任意x,g(x)和h(x)的值至少有一个是正数,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知f(x)为R上的可导函数,且对任意x∈R,均有f(x)>f′(x),则以下说法正确的是(  )
A.e2017f(-2017)<f(0),f(2017)>e2017f(0)B.e2017f(-2017)<f(0),f(2017)<e2017f(0)
C.e2017f(-2017)>f(0),f(2017)<e2017f(0)D.e2017f(-2017)>f(0),f(2017)>e2017f(0)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.设△ABC的三个内角A,B,C的对边分别为a,b,c,向量$\overrightarrow{m}$=(b,c-a),$\overrightarrow{n}$=(sinB-sinC,sinA+sinC),且$\overrightarrow{m}$⊥$\overrightarrow{n}$.
(1)求角A的大小;
(2)若a=2,c=4$\sqrt{3}$sinB,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.设函数F(x)=$\frac{f(x)}{e^x}$是定义在R上的函数,其中f(x)的导函数为f'(x),满足f'(x)<f(x)对于x∈R恒成立,则(  )
A.f(2)>e2f(0),f(2 017>e2017f(0)B.f(2)>e2f(0),f(2 017)<e2017f(0)
C.f(2)<e2f(0),f(2 017)>e2017f(0)D.f(2)<e2f(0),f(2 017)<e2017f(0)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知6tanαsinα=5,α∈(-$\frac{π}{2}$,0),则sinα的值是-$\frac{\sqrt{5}}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.焦点为F的抛物线C:y2=8x的准线与x轴交于点A,点M在抛物线C上,则当$\frac{{|{MA}|}}{{|{MF}|}}$取得最大值时,直线MA的方程为(  )
A.y=x+2或y=-x-2B.y=x+2C.y=2x+2或y=-2x+2D.y=-2x+2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知$\overrightarrow a=(1,λ)$,$\overrightarrow b=(2,1)$,若向量$2\overrightarrow a+\overrightarrow b$与$\overrightarrow c=(8,6)$共线,则$|{\overrightarrow a}|$=$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.如图,以A、B、C、D、E为顶点的六面体中,△ABC和△ABD均为等边三角形,且平面ABC⊥平面ABD,EC⊥平面ABC,EC=$\sqrt{3}$,AB=2.
(1)求证:DE⊥平面ABD;
(2)求二面角D-BE-C的余弦值.

查看答案和解析>>

同步练习册答案