分析 (1)由$\overrightarrow{m}$⊥$\overrightarrow{n}$.得b(sinB-sinc)+(c-a)(sinA+sinC)=0⇒sinB(sinB-sinC)+(sinC-sinA)(sinA+sinC)⇒b2+c2-a2=bc,cosA=$\frac{{b}^{2}+{c}^{2}-{a}^{2}}{2bc}=\frac{1}{2}$,即可求得A;
(2)由$\frac{a}{sinA}=\frac{c}{sinC},c=4\sqrt{3}sinB$,得到$\frac{sinB}{sinC}=\frac{1}{3}$,c=3b,由余弦定理得a2=b2+c2-2bccosA⇒4=b2+9b2-3b2,得b=$\frac{2\sqrt{7}}{7}$,c=$\frac{6\sqrt{7}}{7}$,即可求得ABC的面积s.
解答 解:(1)∵向量$\overrightarrow{m}$=(b,c-a),$\overrightarrow{n}$=(sinB-sinC,sinA+sinC),且$\overrightarrow{m}$⊥$\overrightarrow{n}$.
∴b(sinB-sinc)+(c-a)(sinA+sinC)=0⇒sinB(sinB-sinC)+(sinC-sinA)(sinA+sinC),
sin2B+sin2C-sin2A=sinBsinC,
⇒b2+c2-a2=bc,
∴cosA=$\frac{{b}^{2}+{c}^{2}-{a}^{2}}{2bc}=\frac{1}{2}$,
∵A∈(0,π),∴A=$\frac{π}{3}$.
(2)由$\frac{a}{sinA}=\frac{c}{sinC},c=4\sqrt{3}sinB$,得到$\frac{sinB}{sinC}=\frac{1}{3}$,
∴$\frac{b}{c}=\frac{sinB}{sinC}=\frac{1}{3}$,∴c=3b.
由余弦定理得a2=b2+c2-2bccosA⇒4=b2+9b2-3b2,
∴b2=$\frac{4}{7}$,b=$\frac{2\sqrt{7}}{7}$,c=$\frac{6\sqrt{7}}{7}$,
∴△ABC的面积s=$\frac{1}{2}bcsinA=\frac{1}{2}×\frac{2}{\sqrt{7}}×\frac{6}{\sqrt{7}}=\frac{6}{7}$.
点评 本题考查了正余弦定理的应用,考查了转化思想、计算能力,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | 横伸长到原来的2倍,再向左平移$\frac{π}{8}$ | |
| B. | 横伸长到原来的2倍,再向右平移$\frac{π}{4}$个 | |
| C. | 横缩短到原来的$\frac{1}{2}$倍,再向右平移$\frac{π}{4}$ | |
| D. | 横缩短到原来的$\frac{1}{2}$倍,再向左平移$\frac{π}{8}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (1,2) | B. | [1,2) | C. | (2,5] | D. | [2,5] |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 1 | B. | $\frac{1}{2}$ | C. | $\frac{4}{7}$ | D. | $\frac{2}{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{2π+1}{3}$ | B. | $\frac{4π+1}{3}$ | C. | $\frac{2π+3}{3}$ | D. | $\frac{2π+2}{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com