精英家教网 > 高中数学 > 题目详情
10.已知球O是正三棱锥(底面为正三角形,顶点在底面的射影为底面中心)A-BCD的外接球,BC=3,AB=2$\sqrt{3}$,点E在线段BD上,且BD=3BE,过点E作球O的截面,则所得截面圆面积的取值范围是[2π,4π].

分析 设△BDC的中心为O1,球O的半径为R,
连接oO1D,OD,O1E,OE,可得R2=3+(3-R)2,解得R=2,
过点E作圆O的截面,当截面与OE垂直时,截面的面积最小,当截面过球心时,截面面积最大,即可求解.

解答 解:如图,设△BDC的中心为O1,球O的半径为R,
连接oO1D,OD,O1E,OE,
则${O}_{1}D=3sin6{0}^{0}×\frac{2}{3}=\sqrt{3}$,AO1=$\sqrt{A{D}^{2}-D{{O}_{1}}^{2}}=3$,
在Rt△OO1D中,R2=3+(3-R)2,解得R=2,
∵BD=3BE,∴DE=2
在△DEO1中,O1E=$\sqrt{3+4-2×\sqrt{3}×2×cos3{0}^{0}}=1$
∴$OE=\sqrt{{O}_{1}{E}^{2}+O{{O}_{1}}^{2}}=\sqrt{2}$
过点E作圆O的截面,当截面与OE垂直时,截面的面积最小,
此时截面圆的半径为$\sqrt{{2}^{2}-(\sqrt{2})^{2}}=\sqrt{2}$,最小面积为2π.
当截面过球心时,截面面积最大,最大面积为4π.
故答案为[2π,4π]

点评 本题考查了球与三棱锥的组合体,考查了空间想象能力,转化思想,解题关键是要确定何时取最值,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

20.设函数f(x)=lnx+$\frac{k}{x}$,k∈R.
(Ⅰ)若曲线y=f(x)在点(e,f(e))处的切线与直线x-2=0垂直,求出k值.
(Ⅱ)试讨论f(x)的单调区间;
(Ⅲ)已知函数f(x)在x=e处取得极小值,不等式f(x)<$\frac{m}{x}$的解集为P,若M={x|e≤x≤3},且M∩P≠φ,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.设△ABC的三个内角A,B,C的对边分别为a,b,c,向量$\overrightarrow{m}$=(b,c-a),$\overrightarrow{n}$=(sinB-sinC,sinA+sinC),且$\overrightarrow{m}$⊥$\overrightarrow{n}$.
(1)求角A的大小;
(2)若a=2,c=4$\sqrt{3}$sinB,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知6tanαsinα=5,α∈(-$\frac{π}{2}$,0),则sinα的值是-$\frac{\sqrt{5}}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.焦点为F的抛物线C:y2=8x的准线与x轴交于点A,点M在抛物线C上,则当$\frac{{|{MA}|}}{{|{MF}|}}$取得最大值时,直线MA的方程为(  )
A.y=x+2或y=-x-2B.y=x+2C.y=2x+2或y=-2x+2D.y=-2x+2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知集合A={x∈N|-2<x<4},$B=\{x|\frac{1}{2}≤{2^x}≤4\}$,则A∩B=(  )
A.{x|-1≤x≤2}B.{-1,0,1,2}C.{1,2}D.{0,1,2}

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知$\overrightarrow a=(1,λ)$,$\overrightarrow b=(2,1)$,若向量$2\overrightarrow a+\overrightarrow b$与$\overrightarrow c=(8,6)$共线,则$|{\overrightarrow a}|$=$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知集合A={x|x<a},B={x|x2-3x+2<0},若A∩B=B,则实数a的取值范围是(  )
A.a≤1B.a<1C.a≥2D.a>2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知在一次全国数学竞赛中,某市3000名参赛学生的初赛成绩统计如图所示.

则在本次数学竞赛中,成绩在[80,90)内的学生人数为900.

查看答案和解析>>

同步练习册答案