分析 (Ⅰ)连接BC1,可得B1C⊥面ABC1.B1C⊥AB.
由AB⊥BB1,得AB⊥面BB1C1C.可得平面AA1B1B⊥平面BB1C1C;
(Ⅱ)由∠ADB是二面角A-CC1-B的平面角,得△C1BC为等边三角形.
分别以BA,BB1,BD为x,y,z轴建立空间直角坐标系,
不妨设AB=2,则A(2,0,0),${C_1}(0,1,\sqrt{3})$,$C(0,-1,-\sqrt{3})$.利用向量法求解.
解答 解:(Ⅰ)证明:连接BC1,因为BB1C1C为菱形,
所以B1C⊥BC1,又B1C⊥AC1,AC1∩BC1=C1,
所以B1C⊥面ABC1.故B1C⊥AB.
因为AB⊥BB1,且BB1∩BC1,所以AB⊥面BB1C1C.
而AB?平面ABB1A1,所以平面AA1B1B⊥平面BB1C1C;![]()
(Ⅱ)因为∠ADB是二面角A-CC1-B的平面角,
所以BD⊥CC1,又D是CC1中点,
所以BD=BC1,所以△C1BC为等边三角形.
如图所示,分别以BA,BB1,BD为x,y,z轴建立空间直角坐标系,
不妨设AB=2,则A(2,0,0),${C_1}(0,1,\sqrt{3})$,$C(0,-1,-\sqrt{3})$,$\overrightarrow{A{C}_{1}}=(-2,1,\sqrt{3}$).
设$\overrightarrow n=(x,y,z)$是平面ABC的一个法向量,则$\left\{{\begin{array}{l}{\overrightarrow n•\overrightarrow{BC}=0}\\{\overrightarrow n•\overrightarrow{BA}=0}\end{array}}\right.$,即$\left\{{\begin{array}{l}{2x=0}\\{-y+\sqrt{3}z=0}\end{array}}\right.$,
取z=1得$\overrightarrow n=(0,\sqrt{3},1)$.
所以$cos\left?{\overrightarrow n,\overrightarrow{A{C_1}}}\right>=\frac{{\overrightarrow n•\overrightarrow{A{C_1}}}}{{|{\overrightarrow n}||{\overrightarrow{A{C_1}}}|}}$=$\frac{{\sqrt{3}+\sqrt{3}}}{{\sqrt{3+1}\sqrt{4+1+3}}}=\frac{{\sqrt{6}}}{4}$,
所以直线AC1与平面ABC所成的余弦值为$\frac{{\sqrt{10}}}{4}$.
点评 本题考查了空间面面垂直的判定,向量法求线面角、面面角,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | e2017f(-2017)<f(0),f(2017)>e2017f(0) | B. | e2017f(-2017)<f(0),f(2017)<e2017f(0) | ||
| C. | e2017f(-2017)>f(0),f(2017)<e2017f(0) | D. | e2017f(-2017)>f(0),f(2017)>e2017f(0) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | y=x+2或y=-x-2 | B. | y=x+2 | C. | y=2x+2或y=-2x+2 | D. | y=-2x+2 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | a≤1 | B. | a<1 | C. | a≥2 | D. | a>2 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com