4£®ÒÑÖª¶þ´Îº¯Êýf£¨x£©=$\frac{1}{3}$x2+$\frac{2}{3}$x£®ÊýÁÐ{an}µÄǰnÏîºÍΪSn£¬µã£¨n£¬Sn£©£¨n¡ÊN*£©ÔÚ¶þ´Îº¯Êýy=f£¨x£©µÄͼÏóÉÏ£®
£¨¢ñ£©ÇóÊýÁÐ{an}µÄͨÏʽ£»
£¨¢ò£©Éèbn=anan+1cos[£¨n+1£©¦Ð]£¨n¡ÊN*£©£¬ÊýÁÐ{bn}µÄǰnÏîºÍΪTn£¬ÈôTn¡Ýtn2¶Ôn¡ÊN*ºã³ÉÁ¢£¬ÇóʵÊýtµÄȡֵ·¶Î§£»
£¨¢ó£©ÔÚÊýÁÐ{an}ÖÐÊÇ·ñ´æÔÚÕâÑùһЩÏ${a}_{{n}_{1}}$£¬${a}_{{n}_{2}}$£¬a${\;}_{{n}_{3}}$£¬¡­£¬a${\;}_{{n}_{k}}$ÕâЩÏî¶¼Äܹ»¹¹³ÉÒÔa1ΪÊ×Ïq£¨0£¼q£¼5£©Îª¹«±ÈµÄµÈ±ÈÊýÁÐ{a${\;}_{{n}_{k}}$}£¿Èô´æÔÚ£¬Ð´³önk¹ØÓÚkµÄ±í´ïʽ£»Èô²»´æÔÚ£¬ËµÃ÷ÀíÓÉ£®

·ÖÎö £¨¢ñ£©ÏÈÇó³ösn£¬Í¨¹ýÌÖÂÛnµÄ·¶Î§£¬´Ó¶øµÃµ½ÊýÁÐ{an}µÄͨÏʽ£»
£¨¢ò£©Í¨¹ýÌÖÂÛnµÄÆæÅ¼ÐÔ£¬´Ó¶øÇó³öTnµÄ±í´ïʽ£¬ÎÊÌâת»¯ÎªÊ¹-$\frac{1}{9}$£¨2n2+6n£©¡Ýtn2£¨nΪÕýżÊý£©ºã³ÉÁ¢¼´¿É£»
£¨¢ó£©Í¨¹ýÌÖÂÛ¹«±ÈµÄÆæÅ¼ÐÔ£¬´Ó¶øµÃµ½´ð°¸£®

½â´ð ½â£º£¨¢ñ£©ÓÉÌâÒâ¿ÉÖª£¬Sn=$\frac{1}{3}$n2+$\frac{2}{3}$n£¬£¨n¡ÊN*£©£®
µ±n¡Ý2ʱ£¬an=Sn-Sn-1=$\frac{1}{3}$n2+$\frac{2}{3}$n-[$\frac{1}{3}$£¨n-1£©2+$\frac{2}{3}$£¨n-1£©]=$\frac{2n+1}{3}$£»
µ±n=1ʱ£¬a1=S1=1ÊʺÏÉÏʽ£®
ÊýÁÐ{an}µÄͨÏʽΪ$\frac{2n+1}{3}$£¨n¡ÊN*£©£»
£¨¢ò£©¡ßbn=anan+1cos[£¨n+1£©¦Ð]=£¨-1£©n-1anan+1£¬
¡àTn=b1+b2+¡­+bn=a1a2-a2a3+a3a4-a4a5+¡­+£¨-1£©n-1anan+1£®
ÓÉ£¨¢ñ£©¿ÉÖª£¬ÊýÁÐ{an}ÊÇÒÔ1ΪÊ×Ï¹«²îΪ$\frac{2}{3}$µÄµÈ²îÊýÁУ®
¢Ùµ±n=2m£¨m¡ÊN*£©Ê±£¬Tn=T2m=a1a2-a2a3+a3a4-a4a5+¡­+£¨-1£©n-1anan+1£¬
=a2£¨a1-a3£©+a4£¨a3-a5£©+¡­+a2m£¨a2m-1-a2m+1£©=-$\frac{4}{3}$£¨a2+a4+¡­+a2m£©
=-$\frac{4}{3}$¡Á$\frac{{a}_{2}+{a}_{2m}}{2}$¡Ám=-$\frac{1}{9}$£¨8m2+12m£©=-$\frac{1}{9}$£¨2n2+6n£©
¢Úµ±n=2m-1£¨m¡ÊN*£©Ê±£¬Tn=T2m-1=T2m-£¨-1£©2m-1a2ma2m+1
=-$\frac{1}{9}$£¨8m2+12m£©+$\frac{1}{9}$£¨16m2+16m+3£©
=$\frac{1}{9}$£¨8m2+4m+3£©
=$\frac{1}{9}$£¨2n2+6n+7£©£¬
¡àTn=$\left\{\begin{array}{l}{-\frac{1}{9}£¨2{n}^{2}+6n£©£¬nΪżÊý}\\{\frac{1}{9}£¨2{n}^{2}+6n+7£©£¬nÎªÆæÊý}\end{array}\right.$
ҪʹTn¡Ýtn2¶Ôn¡ÊN*ºã³ÉÁ¢£¬Ö»ÒªÊ¹-$\frac{1}{9}$£¨2n2+6n£©¡Ýtn2£¨nΪÕýżÊý£©ºã³ÉÁ¢£¬
¼´Ê¹-$\frac{1}{9}$£¨2+$\frac{6}{n}$£©¡Ýt¶ÔnΪÕýżÊýºã³ÉÁ¢£®
¡àt¡Ü-$\frac{5}{9}$£®
¹ÊʵÊýtµÄȡֵ·¶Î§ÊÇ£¨-¡Þ£¬-$\frac{5}{9}$]£»
£¨¢ó£©ÓÉan=$\frac{2n+1}{3}$ÖªÊýÁÐ{an}ÖÐÿһÏî¶¼²»¿ÉÄÜÊÇżÊý£®
¢ÙÈç´æÔÚÒÔa1ΪÊ×Ï¹«±ÈqΪ2»ò4µÄÊýÁÐ{${a}_{{n}_{k}}$}£¨k¡ÊN*£©£¬
´Ëʱ{${a}_{{n}_{k}}$}ÖÐÿһÏî³ýµÚÒ»ÏîÍâ¶¼ÊÇżÊý£¬
¹Ê²»´æÔÚÒÔa1ΪÊ×Ï¹«±ÈΪżÊýµÄÊýÁÐ{${a}_{{n}_{k}}$}£»
¢Úµ±q=1ʱ£¬ÏÔÈ»²»´æÔÚÕâÑùµÄÊýÁÐ{{${a}_{{n}_{k}}$}£»µ±q=3ʱ£¬
Èô´æÔÚÒÔa1ΪÊ×Ï¹«±ÈΪ3µÄÊýÁÐ{${a}_{{n}_{k}}$}£¨k¡ÊN*£©£¬Ôò${a}_{{n}_{1}}$=1£¬£¨n1=1£©£¬
${a}_{{n}_{k}}$=3k-1=$\frac{2{n}_{k}+1}{3}$£¬nk=$\frac{{3}^{k}-1}{2}$£¬
¼´´æÔÚÂú×ãÌõ¼þµÄÊýÁÐ{${a}_{{n}_{k}}$}£¬ÇÒnk¨T$\frac{{3}^{k}-1}{2}$£¬£¨k¡ÊN*£©£®

µãÆÀ ±¾Ì⿼²éÁ˶þ´Îº¯ÊýµÄÐÔÖÊ£¬¿¼²éÁËÇóÊýÁеÄͨÏʽÎÊÌ⣬¿¼²éº¯Êýºã³ÉÁ¢ÎÊÌ⣬¿¼²é·ÖÀàÌÖÂÛ˼Ï룬ת»¯Ë¼Ï룬ͨ¹ýÌÖÂÛÇó³öTnµÄ±í´ïʽ£¬ÎÊÌâת»¯Îªº¯Êýºã³ÉÁ¢Êǽâ´ð±¾ÌâµÄ¹Ø¼ü£¬ÊÇÒ»µÀÄÑÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

14£®ÈçͼËùʾ£¬ÔÚÈýÀâÖùABC-A1B1C1ÖУ¬AA1B1BΪÕý·½ÐΣ¬BB1C1CΪÁâÐΣ¬B1C¡ÍAC1£®
£¨¢ñ£©ÇóÖ¤£ºÆ½ÃæAA1B1B¡ÍÆ½ÃæBB1C1C£»
£¨¢ò£©ÈôDÊÇCC1Öе㣬¡ÏADBÊǶþÃæ½ÇA-CC1-BµÄÆ½Ãæ½Ç£¬ÇóÖ±ÏßAC1ÓëÆ½ÃæABCËù³É½ÇµÄÓàÏÒÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

15£®¹ýµã£¨1£¬0£©ÇÒÓëÖ±Ïßx+3y-5=0ƽÐеÄÖ±Ïß·½³ÌÊÇ£¨¡¡¡¡£©
A£®x+3y+1=0B£®x+3y-1=0C£®3x-y-3=0D£®3x+y-3=0

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

12£®ÒÑÖªº¯Êýf£¨x£©=ax+$\frac{x-2}{x-1}$£¨a£¾1£©£¬Ó÷´Ö¤·¨Ö¤Ã÷f£¨x£©=0ûÓиºÊµÊý¸ù£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

19£®·Ö±ðÔÚÇø¼ä[1£¬6]ºÍ[1£¬4]ÄÚÈÎȡһ¸öʵÊý£¬ÒÀ´Î¼ÇΪxºÍy£¬Ôòx£¼yµÄ¸ÅÂÊΪ£¨¡¡¡¡£©
A£®$\frac{1}{3}$B£®$\frac{3}{10}$C£®$\frac{2}{3}$D£®$\frac{7}{10}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

9£®ÔÚ·â±ÕÖ±ÈýÀâÖùABC-A1B1C1ÄÚÓÐÒ»¸öÌå»ýΪVµÄÇò£¬ÈôAB¡ÍBC£¬AB=15£¬BC=8£¬AA1=5£¬ÔòVµÄ×î´óÖµÊÇ£¨¡¡¡¡£©
A£®$\frac{9¦Ð}{2}$B£®$\frac{125¦Ð}{6}$C£®$\frac{32¦Ð}{3}$D£®36¦Ð

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

16£®ÈôiΪÐéÊýµ¥Î»£¬a¡¢b¡ÊR£¬ÇÒ$\frac{a+2i}{i}$=b+i£¬Ôòab=£¨¡¡¡¡£©
A£®-1B£®1C£®-2D£®2

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

13£®ÔÚ¡÷ABCÖУ¬½ÇA£¬B£¬CµÄ¶Ô±ß·Ö±ðΪa£¬b£¬c£¬ÇÒcosC=$\frac{a}{b}$£®
£¨1£©ÇóB£»
£¨2£©ÉèCMÊǽÇCµÄƽ·ÖÏߣ¬ÇÒCM=1£¬b=6£¬Çócos¡ÏBCM£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

18£®µÈ±ÈÊýÁÐ{an}µÄ¹«±ÈΪ$-\sqrt{2}$£¬Ôò$ln{£¨{{a_{2017}}}£©^2}-ln{£¨{{a_{2016}}}£©^2}$=ln2£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸