精英家教网 > 高中数学 > 题目详情
16.若i为虚数单位,a、b∈R,且$\frac{a+2i}{i}$=b+i,则ab=(  )
A.-1B.1C.-2D.2

分析 利用复数的运算法则、复数相等即可得出.

解答 解:a、b∈R,且$\frac{a+2i}{i}$=b+i,
∴a+2i=bi-1,
∴a=-1,b=2.
则ab═-2.
故选:C.

点评 本题考查了复数的运算法则、复数相等,考查了推理能力与计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

6.在△ABC中,内角A,B,C所对的边分别为a,b,c,且2sin(A-B)=asinA-bsinB,a≠b,则c=2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知函数f(x)=$\frac{\sqrt{3}}{2}$sinωx-$\frac{1}{2}$cosωx(ω>0),将函数y=|f(x)|的图象向左平移$\frac{π}{9}$个单位长度后关于y轴对称,则当ω取最小值时,g(x)=cos(ωx+$\frac{π}{4}$)的单调递减区间为(  )
A.[-$\frac{π}{3}$+$\frac{2kπ}{3}$,$\frac{π}{2}$+$\frac{2kπ}{3}$](k∈Z)B.[-$\frac{π}{3}$+$\frac{4kπ}{3}$,$\frac{π}{2}$+$\frac{4kπ}{3}$](k∈Z)
C.[-$\frac{π}{6}$+$\frac{2kπ}{3}$,$\frac{π}{2}$+$\frac{2kπ}{3}$](k∈Z)D.[-$\frac{π}{6}$+$\frac{4kπ}{3}$,$\frac{π}{2}$+$\frac{4kπ}{3}$](k∈Z)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知二次函数f(x)=$\frac{1}{3}$x2+$\frac{2}{3}$x.数列{an}的前n项和为Sn,点(n,Sn)(n∈N*)在二次函数y=f(x)的图象上.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设bn=anan+1cos[(n+1)π](n∈N*),数列{bn}的前n项和为Tn,若Tn≥tn2对n∈N*恒成立,求实数t的取值范围;
(Ⅲ)在数列{an}中是否存在这样一些项:${a}_{{n}_{1}}$,${a}_{{n}_{2}}$,a${\;}_{{n}_{3}}$,…,a${\;}_{{n}_{k}}$这些项都能够构成以a1为首项,q(0<q<5)为公比的等比数列{a${\;}_{{n}_{k}}$}?若存在,写出nk关于k的表达式;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.在平面直角坐标系中,动圆经过点M(0,t-2),N(0,t+2),P(-2,0).其中t∈R.
(1)求动圆圆心E的轨迹方程;
(2)过点P作直线l交轨迹E于不同的两点A,B,直线OA与直线OB分别交直线x=2于两点C,D,记△ACD与△BCD的面积分别为S1,S2.求S1+S2的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知抛物线y2=4$\sqrt{3}$x的焦点为F,A、B为抛物线上两点,若$\overrightarrow{AF}$=3$\overrightarrow{FB}$,O为坐标原点,则△AOB的面积为(  )
A.8$\sqrt{3}$B.4$\sqrt{3}$C.2$\sqrt{3}$D.$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.在△ABC中,角A、B、C的对边分别为a、b、c,已知2cos(B-C)-1=4cosBcosC.
(1)求A;
(2)若a=$\sqrt{7}$,△ABC的面积为$\frac{3\sqrt{3}}{2}$,求b+c.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.计算下列格式:
(1)(2a${\;}^{\frac{2}{3}}$b${\;}^{\frac{1}{2}}$)(-6a${\;}^{\frac{1}{2}}$b${\;}^{\frac{1}{3}}$)÷(3a${\;}^{\frac{1}{6}}$b${\;}^{\frac{5}{6}}$);
(2)(m${\;}^{\frac{1}{4}}$n${\;}^{-\frac{3}{8}}$)8

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.复数$z=\frac{{{i^{2017}}}}{{1+{i^{2015}}}}$,则z在复平面上对应的点位于(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

同步练习册答案