| A. | [-$\frac{π}{3}$+$\frac{2kπ}{3}$,$\frac{π}{2}$+$\frac{2kπ}{3}$](k∈Z) | B. | [-$\frac{π}{3}$+$\frac{4kπ}{3}$,$\frac{π}{2}$+$\frac{4kπ}{3}$](k∈Z) | ||
| C. | [-$\frac{π}{6}$+$\frac{2kπ}{3}$,$\frac{π}{2}$+$\frac{2kπ}{3}$](k∈Z) | D. | [-$\frac{π}{6}$+$\frac{4kπ}{3}$,$\frac{π}{2}$+$\frac{4kπ}{3}$](k∈Z) |
分析 首先化简三角函数式,然后根据平移以及对称得到ω最小值,然后由题意求单调区间.
解答 解:函数f(x)=$\frac{\sqrt{3}}{2}$sinωx-$\frac{1}{2}$cosωx=sin(ωx$-\frac{π}{6}$),(ω>0),将函数y=|f(x)|的图象向左平移$\frac{π}{9}$个单位长度后得到函数解析式为|sin[ω(x$+\frac{π}{9}$)$-\frac{π}{6}$],又图象关于y轴对称,
所以$\frac{ωπ}{9}-\frac{π}{6}=\frac{π}{2}+\frac{kπ}{2}$,k∈Z,
则当ω取最小值时为$\frac{3}{2}$,
所以g(x)=cos($\frac{3}{2}$x+$\frac{π}{4}$)的单调递减区间由2kπ≤$\frac{3}{2}$x$+\frac{π}{4}$≤2kπ+π,解得$-\frac{π}{6}+\frac{4kπ}{3}≤x≤\frac{π}{2}+\frac{4kπ}{3}$,k∈Z;
所以当ω取最小值时,g(x)=cos(ωx+$\frac{π}{4}$)的单调递减区间为[$-\frac{π}{6}+\frac{4kπ}{3},\frac{π}{2}+\frac{4kπ}{3}$];
故选D.
点评 本题考查了三角函数的图象变换;根据平移规律以及题意得到关于ω的等式是关键.
科目:高中数学 来源: 题型:选择题
| A. | 它们的焦距相等 | B. | 它们的焦点在同一个圆上 | ||
| C. | 它们的渐近线方程相同 | D. | 它们的离心率相等 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $8\sqrt{3}$ | B. | 16 | C. | 8 | D. | $4\sqrt{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | x+3y+1=0 | B. | x+3y-1=0 | C. | 3x-y-3=0 | D. | 3x+y-3=0 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 3 | B. | 2 | C. | 6 | D. | 4 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{3}$ | B. | $\frac{3}{10}$ | C. | $\frac{2}{3}$ | D. | $\frac{7}{10}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com