分析 连结BD交CE于O,连结OF,则当BP∥OF时,PB∥平面CEF,推导出DP=3,四棱锥P-ABCD外接球就是三棱锥P-ABC的外接球,从而求出四棱锥P-ABCD外接球的半径,由此能求出四棱锥P-ABCD外接球的表面积.
解答 解:连结BD交CE于O,则$\frac{BO}{OD}$=$\frac{BE}{CD}$=$\frac{1}{2}$,![]()
连结OF,则当BP∥OF时,PB∥平面CEF,则$\frac{PF}{FD}$=$\frac{1}{2}$,
∵F是DD1的中点,DD1=4,∴DP=3,
又四棱锥P-ABCD外接球就是三棱锥P-ABC的外接球,
∴四棱锥P-ABCD外接球的半径为:$\frac{\sqrt{{3}^{2}+{4}^{2}+{4}^{2}}}{2}$=$\frac{\sqrt{41}}{2}$.
外接球的表面积为:4$π×(\frac{\sqrt{41}}{2})^{2}$=41π.
故答案为:41π.
点评 本题考查四棱锥外接球的表面积的求法,考查正方体、四棱锥、球等基础知识,考查推理论证能力、运算求解能力、空间想象能力,考查化归与转化思想、函数与方程思想、数形结合思想,是中档题.
科目:高中数学 来源: 题型:选择题
| A. | {x|-1≤x≤2} | B. | {-1,0,1,2} | C. | {-2,-1,0,1,2} | D. | {0,1,2} |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $8\sqrt{3}$ | B. | 16 | C. | 8 | D. | $4\sqrt{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | x+3y+1=0 | B. | x+3y-1=0 | C. | 3x-y-3=0 | D. | 3x+y-3=0 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 3 | B. | 2 | C. | 6 | D. | 4 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{3}$ | B. | $\frac{3}{10}$ | C. | $\frac{2}{3}$ | D. | $\frac{7}{10}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | a | B. | 2a | C. | 2$\sqrt{1-a}$-4 | D. | 2$\sqrt{2-a}$-4 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com