精英家教网 > 高中数学 > 题目详情
20.已知a∈R,解关于x的不等式x2-(a+2)x+2a≥0.

分析 将不等式因式分解,x2-(a+2)x+2a=(x-2)(x-a)≥0,讨论a与2的大小,可得不等式的解集.

解答 解:不等式x2-(a+2)x+2a≥0.
因式分解:(x-2)(x-a)≥0,
由方程:(x-2)(x-a)=0,可得x1=2,x2=a.
当a=2时,得(x-2)2≥0,不等式的解集为R.
当a>2时,得x1<x2,不等式的解集为{x|x≤2或x≥a}.
当a<2时,得x1>x2,不等式的解集为{x|x≤a或x≥2}.

点评 本题考查了一元二次不等式的解法,需要讨论,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

12.已知等比数列{an}满足an+an+1=9•2n-1,n∈N*
(1)求数列{an}的通项公式;
(2)记bn=(-1)n$\frac{{9•{2^{n-1}}}}{{{a_n}{a_{n+1}}}}$,求数列{bn}的前n项和Tn
(3)设数列{an}的前n项和为Sn,若不等式Sn>kan-2对任意正整数n恒成立,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.若不等式组$\left\{\begin{array}{l}{x+a≥0}\\{4-2x>x-2}\end{array}\right.$有解,则实数a的取值范围是(  )
A.a≥-2B.a<-2C.a≤-2D.a>-2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知F1,F2为双曲线E:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的左、右两个焦点,点M在E上,MF1与x轴垂直,sin∠MF2F1=$\frac{1}{3}$,则E的离心率为$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.在△ABC中,sinA+$\sqrt{2}$sinB=2sinC,b=3,当C角最大时,△ABC的面积是多少.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知四面体ABCD中,∠BAC=60°,∠BAD=∠CAD=90°,$AB=\sqrt{3}$,$AC=2\sqrt{3}$,其外接球体积为$\frac{32}{3}π$,则该四面体ABCD的棱AD=2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知函数f(x)的导函数为f'(x),且满足f(x)=2xf'(1)+lnx,则$f'(\frac{1}{e})$=(  )
A.$\frac{1}{e}-2$B.e-2C.-1D.e

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.化简$\sqrt{cos2+{{sin}^2}1}$的结果是(  )
A.-cos1B.cos1C.|cos2|D.sin2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.在平面直角坐标系xOy中,曲线C1的参数方程为$\left\{\begin{array}{l}{x=4cosθ}\\{y=3sinθ}\end{array}\right.$(θ为参数),以坐标原点O为极点,x轴的正半轴为极轴建立极坐标系,得曲线C2的极坐标方程为ρ+6sinθ-8cosθ=0(ρ≥0).
(1)化曲线C1的参数方程为普通方程,化曲线C2的极坐标方程为直角坐标方程;
(2)直线l:$\left\{\begin{array}{l}{x=2+t}\\{y=-\frac{3}{2}+λt}\end{array}\right.$(t为参数)过曲线C1与y轴负半轴的交点,求与直线l平行且与曲线C2相切的直线方程.

查看答案和解析>>

同步练习册答案