分析 (1)讨论a的符号,判断f(x)的单调性,计算f(x)的极值,根据零点个数得出f(x)的极小值为负数,列出不等式解出a;
(2)计算f′($\frac{{x}_{1}{+x}_{2}}{2}$),根据函数单调性判断f′($\frac{{x}_{1}{+x}_{2}}{2}$)的符号即可;
(3)用x1,x2表示出P点坐标,根据等边三角形的性质列方程化简即可求出t和a的关系,再计算(t-1)(a+$\sqrt{3}$)的值.
解答 (1)证明:f(x)=ex+ax,
∴f′(x)=ex+a,
若a≥0,则f'(x)>0,则函数f(x)在R上单调递增,这与题设矛盾.
∴a<0,
令f′(x)>0得x>ln(-a),令f′(x)<0得x<ln(-a),
∴f(x)在(-∞,ln(-a))上单调递减,在(ln(-a),+∞)上单调递增,
∴f(x)有两个零点,
∴fmin(x)=f(ln(-a))=-a+aln(-a),
∴-a+aln(-a)<0,解得a<-e.
(2)证明:∵x1,x2是f(x)的零点,
∴$\left\{\begin{array}{l}{{e}^{{x}_{1}}+{ax}_{1}=0}\\{{e}^{{x}_{2}}+{ax}_{2}=0}\end{array}\right.$,
两式相减得:a=-$\frac{{e}^{{x}_{2}}{-e}^{{x}_{1}}}{{{x}_{2}-x}_{1}}$.
记 $\frac{{{x}_{2}-x}_{1}}{2}$=s,则f′( $\frac{{x}_{1}{+x}_{2}}{2}$)=${e}^{\frac{{x}_{1}{+x}_{2}}{2}}$-$\frac{{e}^{{x}_{2}}{-e}^{{x}_{1}}}{{{x}_{2}-x}_{1}}$=$\frac{{e}^{\frac{{x}_{1}{+x}_{2}}{2}}}{2s}$[2s-(es-e-s)],
设g(s)=2s-(es-e-s),则g′(s)=2-(es+e-s)<0,
∴g(s)是减函数,
∴g(s)<g(0)=0,
又 $\frac{{e}^{\frac{{x}_{1}{+x}_{2}}{2}}}{2s}$>0,∴f′( $\frac{{x}_{1}{+x}_{2}}{2}$)<0.
(3)解:由 $\left\{\begin{array}{l}{{e}^{{x}_{1}}+{ax}_{1}=0}\\{{e}^{{x}_{2}}+{ax}_{2}=0}\end{array}\right.$,$\left\{\begin{array}{l}{{e}^{{x}_{1}}={ax}_{1}}\\{{e}^{{x}_{2}}={ax}_{2}}\end{array}\right.$,
∴${e}^{\frac{{x}_{1}{+x}_{2}}{2}}$=-a $\sqrt{{{x}_{1}x}_{2}}$,
设P(x0,y0),在等边三角形ABC中,易知x0=$\frac{{x}_{1}{+x}_{2}}{2}$∈(x1,x2),y0=f(x0)<0,
由等边三角形性质知y0=-$\frac{\sqrt{3}{(x}_{2}{-x}_{1})}{2}$,
∴y0+$\frac{\sqrt{3}{(x}_{2}{-x}_{1})}{2}$=0,即${e}^{\frac{{x}_{1}{+x}_{2}}{2}}$+$\frac{a}{2}$(x2+x1)+$\frac{\sqrt{3}{(x}_{2}{-x}_{1})}{2}$=0,
∴-a$\sqrt{{{x}_{1}x}_{2}}$+$\frac{a}{2}$(x1+x2)+$\frac{{\sqrt{3}(x}_{2}{-x}_{1})}{2}$=0,
∵x1>0,∴-a $\sqrt{\frac{{x}_{2}}{{x}_{1}}}$+$\frac{a}{2}$( $\frac{{x}_{2}}{{x}_{1}}$+1)+$\frac{\sqrt{3}(\frac{{x}_{2}}{{x}_{1}}-1)}{2}$=0,
∴-at+$\frac{a}{2}$(t2+1)+$\frac{\sqrt{3}}{2}$(t2-1)=0,即(a+$\sqrt{3}$)t2-2at+a-$\sqrt{3}$=0,
∴[(a+$\sqrt{3}$)t+$\sqrt{3}$-a](t-1)=0,
∵t>1,∴(a+$\sqrt{3}$)t+$\sqrt{3}$-a=0,
∴t=$\frac{a-\sqrt{3}}{a+\sqrt{3}}$,t-1=-$\frac{2\sqrt{3}}{a+\sqrt{3}}$,
∴(t-1)(a+$\sqrt{3}$)=-2$\sqrt{3}$.
点评 本题考查了导数与函数单调性的关系,函数单调性的判断与应用,属于综合题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (-4,-9) | B. | (-8,-9) | C. | (8,11) | D. | (-5,-6) |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com