精英家教网 > 高中数学 > 题目详情
20.函数f(x)=lnx+ax(a<0)的单调增区间为$(0,-\frac{1}{a}]$.

分析 令f′(x)≥0,解得x范围即可得出.

解答 解:f(x)=lnx+ax(a<0),f′(x)=$\frac{1}{x}$+a=$\frac{a(x-\frac{1}{-a})}{x}$,
令f′(x)≥0,解得$0<x≤-\frac{1}{a}$.
∴函数f(x)=lnx+ax(a<0)的单调增区间为$(0,-\frac{1}{a}]$.
故答案为:$(0,-\frac{1}{a}]$.

点评 本题考查了利用导数研究函数的单调性,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

10.某几何体的三视图如图所示(单位:cm),则该几何体的体积等于(  )
A.24+6πcm3B.24+12πcm3C.48+12πcm3D.96+12πcm3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知向量$\overrightarrow a≠\overrightarrow e$,$|\overrightarrow e|=1$,对任意t∈R,恒有$|\overrightarrow a-t\overrightarrow e|≥|\overrightarrow a-2\overrightarrow e|$,则(  )
A.$\overrightarrow a⊥\overrightarrow e$B.$\overrightarrow a⊥(\overrightarrow a-2\overrightarrow e)$C.$\overrightarrow e⊥(\overrightarrow a-2\overrightarrow e)$D.$(\overrightarrow a+2\overrightarrow e)⊥(\overrightarrow a-2\overrightarrow e)$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知集合A={log2x,4,8},B={4,5}.若A∪B={1,4,5,8},则实数x的值为2,A∩B={4};令U=A∪B,则∁UA={5}.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.设a,b∈R,复数$\frac{i-2}{1+2i}=a+bi$,则a2+b2=1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知函数f(x)=ex+ax,(a∈R),其图象与x轴交于A(x1,0),B(x2,0)两点,且x1<x2
(1)证明:a<-e;
(2)证明:$f'({\frac{{{x_1}+{x_2}}}{2}})<0$;(其中f'(x)为f(x)的导函数).
(3)设点C在函数f(x)的图象上,且△ABC为等边三角形,记$\sqrt{\frac{x_2}{x_1}}=t$,求$(t-1)(a+\sqrt{3})$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知复数z=(2+i)m2-$\frac{6m}{1-i}$-2(1-i),当实数m取什么值时,复数z是 
(1)虚数,
(2)纯虚数.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.设函数f(x)=x2+3x-2,则 $\lim_{△x→0}\frac{{f({1+2△x})-f(1)}}{△x}$=(  )
A.5B.-5C.10D.-10

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.若不等式a>|x-5|-|x+1|对x∈R恒成立,则实数a的取值范围是(6,+∞).

查看答案和解析>>

同步练习册答案