精英家教网 > 高中数学 > 题目详情
1.某班主任对全班40名学生进行了作业量多少的调查.数据如下表:
认为作业多认为作业不多总计
喜欢玩游戏2010
不喜欢玩游戏28
总计
(Ⅰ)请完善上表中所缺的有关数据;
(Ⅱ)根据表中数据,问是否有95%的把握认为“喜欢玩游戏与作业量的多少有关系”?
P(x2≥k)0.100    0.050    0.010
k2.706    3.841    6.635
附:χ2=$\frac{{n{{(n}_{11}n}_{22}{{-n}_{12}n}_{21})}^{2}}{{(n}_{11}{+n}_{12}){(n}_{21}{+n}_{22}){(n}_{11}{+n}_{21}){(n}_{12}{+n}_{22})}$.

分析 (Ⅰ)根据题意填写列联表即可;
(Ⅱ)计算观测值,对照临界值得出结论.

解答 解:(Ⅰ)填写列联表,如下;

认为作业多认为作业不多总计
喜欢玩游戏201030
不喜欢玩游戏2810
总计221840
…(6分)
(Ⅱ)将表中的数据代入公式:
χ2=$\frac{{n{{(n}_{11}n}_{22}{{-n}_{12}n}_{21})}^{2}}{{(n}_{11}{+n}_{12}){(n}_{21}{+n}_{22}){(n}_{11}{+n}_{21}){(n}_{12}{+n}_{22})}$,
得x2=$\frac{40(20×8-2×10)^{2}}{22×18×10×30}$,…(10分)
计算得χ2≈6.599>3.841,
所以有95%把握认为喜欢玩游戏与作业量的多少有关系…(12分)

点评 本题考查了列联表与独立性检验的应用问题,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

13.设x,y满足约束条件$\left\{\begin{array}{l}{2x+y-5≤0}\\{x-y-1≤0}\\{x≥1}\end{array}\right.$,若z=ax+y仅在点(2,1)处取得最大值,则a的取值范围是(  )
A.(-∞,-1)B.(2,+∞)C.(0,2)D.(-1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.下列函数中,在定义域上为减函数的是(  )
A.y=x2B.y=cosxC.$y={x^{\frac{1}{2}}}$D.y=-lnx

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.计算:$\underset{lim}{x→0}(1+2x)^{\frac{1}{x}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知过点A(-2,0)的直线与x=2相交于点C,过点B(2,0)的直线与x=-2相交于点D,若直线CD与圆x2+y2=4相切,则直线AC与BD的交点M的轨迹方程为$\frac{{x}^{2}}{4}$+y2=1(x≠±2).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知数列{an}的通项公式是an=$\left\{\begin{array}{l}{2^{-n}}\;\;\;\;\;\;(n是奇数)\\ \frac{1}{{2n+{n^2}}}\;\;(n是偶数)\end{array}$,则它的前4项和为$\frac{19}{24}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知数列{an}的前n项和Sn=n2an(n≥2),且a1=1,
(1)计算a2、a3、a4,猜想数列{an}的通项公式;
(2)用数学归纳法证明你的猜想.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.某几何体的三视图如图所示(单位:cm),则该几何体的体积等于(  )
A.24+6πcm3B.24+12πcm3C.48+12πcm3D.96+12πcm3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知向量$\overrightarrow a≠\overrightarrow e$,$|\overrightarrow e|=1$,对任意t∈R,恒有$|\overrightarrow a-t\overrightarrow e|≥|\overrightarrow a-2\overrightarrow e|$,则(  )
A.$\overrightarrow a⊥\overrightarrow e$B.$\overrightarrow a⊥(\overrightarrow a-2\overrightarrow e)$C.$\overrightarrow e⊥(\overrightarrow a-2\overrightarrow e)$D.$(\overrightarrow a+2\overrightarrow e)⊥(\overrightarrow a-2\overrightarrow e)$

查看答案和解析>>

同步练习册答案