精英家教网 > 高中数学 > 题目详情
已知函数f(x)=x2-1,g(x)=a|x-1|.
(Ⅰ)若|f(x)|=g(x)有两个不同的解,求a的值;
(Ⅱ)若当x∈R时,不等式f(x)≥g(x)恒成立,求a的取值范围;
(Ⅲ)求h(x)=|f(x)|+g(x)在[-2,2]上的最大值.
分析:(Ⅰ)解方程|f(x)|=g(x),根据积商符号法则转化为两个绝对值不等式的根的问题;
(Ⅱ)不等式f(x)≥g(x)恒成立即(x2-1)≥a|x-1|对x∈R恒成立,对x进行讨论,分离参数,转化为函数的最值问题求解;(Ⅲ)去绝对值,分段求函数的最值.
解答:解:(Ⅰ)方程|f(x)|=g(x),
即|x2-1|=a|x-1|,变形得|x-1|(|x+1|-a)=0,
显然,x=1已是该方程的根,
从而欲原方程有两个不同的解,即要求方程|x+1|=a
“有且仅有一个不等于1的解”或
“有两解,一解为1,另一解不等于1”
得a=0或a=2
(Ⅱ)不等式f(x)≥g(x)对x∈R恒成立,
即(x2-1)≥a|x-1|(*)对x∈R恒成立,
①当x=1时,(*)显然成立,此时a∈R
②当x≠1时,(*)可变形为a≤
x2-1
|x-1|

φ(x)=
x2-1
|x-1|
=
x+1,(x>1)
-(x+1),(x<1)

因为当x>1时,φ(x)>2;而当x<1时,φ(x)>-2.
所以g(x)>-2,故此时a≤-2
综合①②,得所求a的取值范围是a≤-2
(Ⅲ)因为h(x)=|f(x)|+g(x)=|x2-1|+a|x-1|
=
x2+ax-a-1,(x≥1)
-x2-ax+a+1,(-1≤x<1)
x2-ax+a-1,(x<-1)

1)当
a
2
>1
,即a>2时,
h(x)在[-2,1]上递减,在[1,2]上递增,
且h(-2)=3a+3,h(2)=a+3,
经比较,此时h(x)在[-2,2]上的最大值为3a+3
2)当0≤
a
2
≤1
,即0≤a≤2时,
h(x)在[-2,-1],[-
a
2
,1]
上递减,
[-1,-
a
2
]
上[1,2]上递增,
且h(-2)=3a+3,h(2)=a+3,h(-
a
2
)=
a2
4
+a+1

经比较,知此时h(x)在[-2,2]上的最大值为3a+3
3)当-1≤
a
2
<0
,即-2≤a<0时,
h(x)在[-2,-1],[-
a
2
,1]
上递减,
[-1,-
a
2
]
,[1,2]上递增,
且h(-2)=3a+3,h(2)=a+3,h(-
a
2
)=
a2
4
+a+1

经比较知此时h(x)在[-2,2]上的最大值为a+3
4)当-
3
2
a
2
<-1
,即-3≤a<-2时,
h(x)在[-2,
a
2
]
[1,-
a
2
]
上递减,
[
a
2
,1]
[-
a
2
,2]
上递增,且h(-2)=3a+3<0,h(2)=a+3≥0,
经比较知此时h(x)在[-2,2]上的最大值为a+3
5)当
a
2
<-
3
2
,即a<-3时,
h(x)在[-2,1]上递减,在[1,2]上递增,
故此时h(x)在[-2,2]上的最大值为h(1)=0
综上所述,当a≥0时,h(x)在[-2,2]上的最大值为3a+3;
当-3≤a<0时,h(x)在[-2,2]上的最大值为a+3;
当a<-3时,h(x)在[-2,2]上的最大值为0.
点评:考查绝对值方程、不等式和最值问题的求法,体现了分类讨论、等价转化的数学思想方法,特别是(Ⅲ)难度较大,很好的考查分析问题、解决问题的能力.属难题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网已知函数f(x)=Asin(ωx+φ)(x∈R,A>0,ω>0,|φ|<
π
2
)的部分图象如图所示,则f(x)的解析式是(  )
A、f(x)=2sin(πx+
π
6
)(x∈R)
B、f(x)=2sin(2πx+
π
6
)(x∈R)
C、f(x)=2sin(πx+
π
3
)(x∈R)
D、f(x)=2sin(2πx+
π
3
)(x∈R)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•深圳一模)已知函数f(x)=
1
3
x3+bx2+cx+d
,设曲线y=f(x)在与x轴交点处的切线为y=4x-12,f′(x)为f(x)的导函数,且满足f′(2-x)=f′(x).
(1)求f(x);
(2)设g(x)=x
f′(x)
 , m>0
,求函数g(x)在[0,m]上的最大值;
(3)设h(x)=lnf′(x),若对一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•上海模拟)已知函数f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)当a=1,b=2时,求f(x)的最小值;
(2)若f(a)≥2m-1对任意0<a<b恒成立,求实数m的取值范围;
(3)设k、c>0,当a=k2,b=(k+c)2时,记f(x)=f1(x);当a=(k+c)2,b=(k+2c)2时,记f(x)=f2(x).
求证:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中数学 来源:上海模拟 题型:解答题

已知函数f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)当a=1,b=2时,求f(x)的最小值;
(2)若f(a)≥2m-1对任意0<a<b恒成立,求实数m的取值范围;
(3)设k、c>0,当a=k2,b=(k+c)2时,记f(x)=f1(x);当a=(k+c)2,b=(k+2c)2时,记f(x)=f2(x).
求证:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中数学 来源:深圳一模 题型:解答题

已知函数f(x)=
1
3
x3+bx2+cx+d
,设曲线y=f(x)在与x轴交点处的切线为y=4x-12,f′(x)为f(x)的导函数,且满足f′(2-x)=f′(x).
(1)求f(x);
(2)设g(x)=x
f′(x)
 , m>0
,求函数g(x)在[0,m]上的最大值;
(3)设h(x)=lnf′(x),若对一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求实数t的取值范围.

查看答案和解析>>

同步练习册答案