精英家教网 > 高中数学 > 题目详情

【题目】设圆的圆心在轴上,并且过两点.

(1)求圆的方程;

(2)设直线与圆交于两点,那么以为直径的圆能否经过原点,若能,请求出直线的方程;若不能,请说明理由.

【答案】(1) (2) .

【解析】试题分析:(1的圆心在的垂直平分线上,又的中点为 ,∴的中垂线为.∵圆的圆心在轴上,∴圆的圆心为,因此,圆的半径,(2)设M,N的中点为H,假如以为直径的圆能过原点,则.,设是直线与圆的交点,将代入圆的方程得: .∴.∴的中点为.代入即可求得,解得.再检验即可

试题解析:

(1)∵圆的圆心在的垂直平分线上,

的中点为 ,∴的中垂线为.

∵圆的圆心在轴上,∴圆的圆心为

因此,圆的半径

∴圆的方程为.

(2)设是直线与圆的交点,

代入圆的方程得: .

.

的中点为.

假如以为直径的圆能过原点,则.

∵圆心到直线的距离为

.

,解得.

经检验时,直线与圆均相交,

的方程为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设复数z=2m+(4-m2)i,当实数m取何值时,复数z对应的点:

(1)位于虚轴上?

(2)位于一、三象限

(3)位于以原点为圆心,以4为半径的圆上

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的离心率为,以为圆心,椭圆的短半轴长为半径的圆与直线相切.

1求椭圆的标准方程;

2已知点,和面内一点,过点任作直线与椭圆相交于两点,设直线的斜率分别为,若,试求满足的关系式.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,底面,底面是直角梯形,

(1)在上确定一点,使得平面,并求的值;

(2)在(1)条件下,求平面与平面所成锐二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设有一条光线从射出,并且经轴上一点反射.

(1)求入射光线和反射光线所在的直线方程(分别记为);

(2)设动直线,当点的距离最大时,求所围成的三角形的内切圆(即:圆心在三角形内,并且与三角形的三边相切的圆)的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了解今年某校高三毕业班想参军的学生体重情况,将所得的数据整理后,画出了频率分布直方图(如图).已知图中从左到右的前3个小组的频率之比为1:2:3,其中第2小组的频数为24.

)求该校高三毕业班想参军的学生人数;

)以这所学校的样本数据来估计全省的总体数据,若从全省高三毕业班想参军的同学中(人数很多)任选三人,设表示体重超过60公斤的学生人数,求的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线)与椭圆相交所得的弦长为

)求抛物线的标准方程;

)设上异于原点的两个不同点,直线的倾斜角分别为,当变化且为定值)时,证明:直线恒过定点,并求出该定点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f (x)=lg(ax2+2x+1)

(1)若函数f (x)的定义域为R,求实数a的取值范围;

(2)若函数f (x)的值域为R,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校高2010级数学培优学习小组有男生3人女生2人,这5人站成一排留影。

(1)求其中的甲乙两人必须相邻的站法有多少种?

(2)求其中的甲乙两人不相邻的站法有多少种?

(3)求甲不站最左端且乙不站最右端的站法有多少种 ?

查看答案和解析>>

同步练习册答案