精英家教网 > 高中数学 > 题目详情
已知函数f(x)=x3-ax2-x+a,其中a为实数.
(1)若f′(-1)=0,求f(x)在[-2,3]上的最大值和最小值;
(2)若f(x)在(-∞,-2]和[3,+∞)上都是递增的,求a的取值范围.
分析:(1)求导函数,利用f′(-1)=0,确定函数的解析式,进而可求f(x)在[-2,3]上的最大值和最小值;
(2)导函数图象开口向上,且恒过点(0,-1),根据f(x)在(-∞,-2]和[3,+∞)上都是递增的,可得a的取值范围.
解答:解:(1)求导函数,可得f′(x)=3x2-2ax-1,∴f′(-1)=3+2a-1=0 
∴a=-1,∴f(x)=x3+x2-x-1
∴f′(x)=3x2+2x-1
由f′(x)=0 可得 x=
1
3
或x=-1
又∵f(
1
3
)=-
32
27
,f(-2)=-3,f(3)=32,f(-1)=0
 
∴f(x)在[-2,3]上的最小值为-3,最大值为32;
(2)f′(x)=3x2-2ax-1,图象开口向上,且恒过点(0,-1)
由条件f(x)在(-∞,-2]和[3,+∞)上都是递增的,可得:f(-2)≥0,∴11+4a≥0,∴a≥-
11
4
 
f′(3)≥0,∴26-6a≥0,∴a≤
13
3
 
∴a的取值范围是[-
11
4
13
3
]
点评:本题考查导数知识的运用,考查函数的最值与单调性,考查解不等式,正确求导是关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网已知函数f(x)=Asin(ωx+φ)(x∈R,A>0,ω>0,|φ|<
π
2
)的部分图象如图所示,则f(x)的解析式是(  )
A、f(x)=2sin(πx+
π
6
)(x∈R)
B、f(x)=2sin(2πx+
π
6
)(x∈R)
C、f(x)=2sin(πx+
π
3
)(x∈R)
D、f(x)=2sin(2πx+
π
3
)(x∈R)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•深圳一模)已知函数f(x)=
1
3
x3+bx2+cx+d
,设曲线y=f(x)在与x轴交点处的切线为y=4x-12,f′(x)为f(x)的导函数,且满足f′(2-x)=f′(x).
(1)求f(x);
(2)设g(x)=x
f′(x)
 , m>0
,求函数g(x)在[0,m]上的最大值;
(3)设h(x)=lnf′(x),若对一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•上海模拟)已知函数f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)当a=1,b=2时,求f(x)的最小值;
(2)若f(a)≥2m-1对任意0<a<b恒成立,求实数m的取值范围;
(3)设k、c>0,当a=k2,b=(k+c)2时,记f(x)=f1(x);当a=(k+c)2,b=(k+2c)2时,记f(x)=f2(x).
求证:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中数学 来源:上海模拟 题型:解答题

已知函数f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)当a=1,b=2时,求f(x)的最小值;
(2)若f(a)≥2m-1对任意0<a<b恒成立,求实数m的取值范围;
(3)设k、c>0,当a=k2,b=(k+c)2时,记f(x)=f1(x);当a=(k+c)2,b=(k+2c)2时,记f(x)=f2(x).
求证:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中数学 来源:深圳一模 题型:解答题

已知函数f(x)=
1
3
x3+bx2+cx+d
,设曲线y=f(x)在与x轴交点处的切线为y=4x-12,f′(x)为f(x)的导函数,且满足f′(2-x)=f′(x).
(1)求f(x);
(2)设g(x)=x
f′(x)
 , m>0
,求函数g(x)在[0,m]上的最大值;
(3)设h(x)=lnf′(x),若对一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求实数t的取值范围.

查看答案和解析>>

同步练习册答案