精英家教网 > 高中数学 > 题目详情

【题目】某篮球比赛采用7局4胜制,即若有一队先胜4局,则此队获胜,比赛就此结束.由于参加比赛的两队实力相当,每局比赛两队获胜的可能性均为.据以往资料统计,第一局比赛组织者可获得门票收入40万元,以后每局比赛门票收入比上一局增加10万元,则组织者在此次比赛中获得的门票收入不少于390万元的概率为________

【答案】

【解析】依题意,每局比赛获得的门票收入组成首项为40,公差为10的等差数列,设此数列为{an},则易知首项a1=40,公差d=10,故Sn=40n×10=5n2+35n.由Sn≥390,得n2+7n≥78,所以n≥6.所以要使获得的门票收入不少于390万元,则至少要比赛6局.①若比赛共进行6局,则;②若比赛共进行了7局,则P7.所以门票收入不少于390万元的概率.

故答案为:.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】下图是某市111日至14日的空气质量指数趋势图空气质量指数(AQI)小于100表示空气质量优良空气质量指数大于200表示空气重度污染某人随机选择111日至1112日中的某一天到达该市并停留3天.

(1)求此人到达当日空气重度污染的概率;

(2)X是此人停留期间空气重度污染的天数X的分布列与数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知等差数列的公差大于0,且是方程的两根,数列的前项和为,且.

(1)求数列的通项公式;

(2)设数列的前项和为,试比较的大小,并用数学归纳法给予证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数(其中),.它的最小正周期为,且的最大值为2

1)求的解析式;

2)写出函数的单调递减区间、对称轴和对称中心.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知长度为的线段的两个端点分别在轴和轴上运动,动点满足,设动点的轨迹为曲线.

(1)求曲线的方程;

(2)过点且斜率不为零的直线与曲线交于两点,在轴上是否存在定点,使得直线的斜率之积为常数.若存在,求出定点的坐标以及此常数;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某中学拟在高一下学期开设游泳选修课,为了了解高一学生喜欢游泳是否与性别有关,该学校对100名高一新生进行了问卷调查,得到如下列联表:

喜欢游泳

不喜欢游泳

合计

男生

10

女生

20

合计

已知在这100人中随机抽取1人抽到喜欢游泳的学生的概率为

(1)请将上述列联表补充完整;

(2)并判断是否有99.9%的把握认为喜欢游泳与性别有关?并说明你的理由;

(3)已知在被调查的学生中有5名来自甲班,其中3名喜欢游泳,现从这5名学生中随机抽取2人,求恰好有1人喜欢游泳的概率.

下面的临界值表仅供参考:

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

(参考公式:,其中

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)如图,设直线将坐标平面分成四个区域(不含边界),若函数的图象恰好位于其中一个区域内,判断其所在的区域并求对应的的取值范围;

(2)当时,求证:,有.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在一次猜灯谜活动中,共有20道灯谜,两名同学独立竞猜,甲同学猜对了12个,乙同学猜对了8个,假设猜对每道灯谜都是等可能的,试求:

1)任选一道灯谜,恰有一个人猜对的概率;

2)任选一道灯谜,甲、乙都没有猜对的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列抽取样本的方式属于简单随机抽样的个数为( )

①从无限多个个体中抽取100个个体作为样本.

②盒子里共有80个零件,从中选出5个零件进行质量检验.在抽样操作时,从中任意拿出一个零件进行质量检验后再把它放回盒子里.

③从20件玩具中一次性抽取3件进行质量检验.

④某班有56名同学,指定个子最高的5名同学参加学校组织的篮球赛.

A.0B.1C.2D.3

查看答案和解析>>

同步练习册答案