精英家教网 > 高中数学 > 题目详情
5.已知函数$f(x)=\left\{\begin{array}{l}|x-1|,x∈(0,2]\\ min\{|x-1|,|x-3|\},x∈(2,4]\\ min\{|x-3|,|x-5|\},x∈(4,+∞).\end{array}\right.$
①若f(x)=a有且只有一个根,则实数a的取值范围是(1,+∞).
②若关于x的方程f(x+T)=f(x)有且仅有3个不同的实根,则实数T的取值范围是(-4,-2)∪(2,4).

分析 ①作出f(x)的图象,根据图象判断;
②将f(x)的图象平移,只需与原图象有3个交点即可.

解答 解:①f(x)=$\left\{\begin{array}{l}{|x-1|,x∈(0,2]}\\{|x-3|,x∈(2,4]}\\{|x-5|,x∈(4,+∞)}\end{array}\right.$,
作出f(x)的函数图象如图所示:

由图象可知当a>1时,f(x)=a只有1解.
②∵关于x的方程f(x+T)=f(x)有且仅有3个不同的实根,
∴将f(x)的图象向左或向右平移|T|个单位后与原图象有3个交点,
∴2<|T|<4,
即-4<T<-2或2<T<4.
故答案为:①(1,+∞),②(-4,-2)∪(2,4).

点评 本题考查方程解与函数图象的关系,函数图象的变换,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

15.从1,2,3,4,5,6这6个数中,每次取出两个不同的数,分别记作a,b,可以得到lga-lgb的不同值的个数是(  )
A.28B.26C.24D.22

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.设m∈R,向量$\overrightarrow{a}$=(m+2,1),$\overrightarrow{b}$=(1,-2m),且$\overrightarrow{a}$⊥$\overrightarrow{b}$,则|$\overrightarrow{a}$+$\overrightarrow{b}$|=$\sqrt{34}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知点P(x,y)在不等式组$\left\{\begin{array}{l}2x-y+a≥0\\ 3x+y-3≤0\end{array}\right.$(a为常数)表示的平面区域上运动,若z=4x+3y的最大值为8,则a=2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.在△ABC中,角A,B,C的对边分别为a,b,c,且b=c,2sinB=$\sqrt{3}$sinA.
(Ⅰ)求cosB的值;
(Ⅱ)若a=2,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知曲线C的参数方程是$\left\{\begin{array}{l}{x=\frac{{t}^{2}}{4}}\\{y=t}\end{array}\right.$,直线l的方程是x=ky+1(k∈R).
(Ⅰ)求曲线C的普通方程;
(Ⅱ)若直线l与曲线C相交所得的弦长是4,求实数k的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.设等差数列{an}的前n项和为Sn,若a3+a5=4,S15=60则a20=(  )
A.4B.6C.10D.12

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知函数f(x)=(a+1)lnx-x2,$g(x)=\frac{{{x^2}+a}}{x}$.
(Ⅰ)讨论函数f(x)的单调区间;
(Ⅱ)若函数f(x)与g(x)在(0,+∞)上的单调性正好相反.
(1)对于$?{x_1},{x_2}∈[\frac{1}{e},3]$,不等式$\frac{1}{{f({x_1})-g({x_2})}}≤\frac{1}{t-1}$恒成立,求实数t的取值范围;
(2)令h(x)=xg(x)-f(x),两正实数x1、x2满足h(x1)+h(x2)+6x1x2=6,证明0<x1+x2≤1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.定义在R上的奇函数f(x)在(-∞,0)上递增,f(2)=1,则满足|f(log${\;}_{\frac{1}{2}}$x)|>1的x的取值范围是(  )
A.($\frac{1}{4}$,4)B.(0,$\frac{1}{2}$)C.(0,$\frac{1}{2}$)∪(2,+∞)D.(0,$\frac{1}{4}$)∪(4,+∞)

查看答案和解析>>

同步练习册答案