精英家教网 > 高中数学 > 题目详情
17.设等差数列{an}的前n项和为Sn,若a3+a5=4,S15=60则a20=(  )
A.4B.6C.10D.12

分析 利用等差数列{an}的通项公式和前n项和公式列出方程组,求出a1=$\frac{1}{2}$,d=$\frac{1}{2}$,由此能求出a20

解答 解:等差数列{an}的前n项和为Sn
∵a3+a5=4,S15=60,
∴$\left\{\begin{array}{l}{{a}_{1}+2d+{a}_{1}+4d=4}\\{15{a}_{1}+\frac{15×14}{2}d=60}\end{array}\right.$,
解得a1=$\frac{1}{2}$,d=$\frac{1}{2}$,
∴a20=a1+19d=$\frac{1}{2}+19×\frac{1}{2}$=10.
故选:C.

点评 本题考查等差数列前20项和的求法,考查等差数列的通项公式、前n项和公式等基础知识,考查推理论证能力、运算求解能力,考查化归与转化思想、函数与方程思想,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

7.设函数f(x)=x-|x+2|-|x-3|-m,若?x∈R,$\frac{1}{m}$-4≥f(x)恒成立.
(1)求m的取值范围;
(2)求证:log(m+1)(m+2)>log(m+2)(m+3)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.等比数列{an}共有2n+1项,其中a1=1,偶数项和为170,奇数项和为341,则n=(  )
A.3B.4C.7D.9

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知函数$f(x)=\left\{\begin{array}{l}|x-1|,x∈(0,2]\\ min\{|x-1|,|x-3|\},x∈(2,4]\\ min\{|x-3|,|x-5|\},x∈(4,+∞).\end{array}\right.$
①若f(x)=a有且只有一个根,则实数a的取值范围是(1,+∞).
②若关于x的方程f(x+T)=f(x)有且仅有3个不同的实根,则实数T的取值范围是(-4,-2)∪(2,4).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.集合A={x|x2-2x<0},B={x|x-2<0},则(  )
A.A∩B=∅B.A∩B=AC.A∪B=AD.A∪B=R

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知圆C:(x-1)2+y2=$\frac{1}{4}$,一动圆与直线x=-$\frac{1}{2}$相切且与圆C外切.
(Ⅰ)求动圆圆心P的轨迹T的方程;
(Ⅱ)若经过定点Q(6,0)的直线l与曲线T相交于A、B两点,M是线段AB的中点,过M作x轴的平行线与曲线T相交于点N,试问是否存在直线l,使得NA⊥NB,若存在,求出直线l的方程,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.将函数$f(x)=sin({2x+φ})({|φ|<\frac{π}{2}})$的图象向左平移$\frac{π}{3}$个单位长度后,所得函数g(x)的图象关于原点对称,则函数f(x)在$[{0,\frac{π}{2}}]$的最大值为(  )
A.0B.$\frac{1}{2}$C.$\frac{{\sqrt{3}}}{2}$D.1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.不透明盒子里装有大小质量完全相同的2个黑球,3个红球,从盒子中随机摸取两球,颜色相同的概率为0.4.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知实数x,y满足:$\left\{\begin{array}{l}{x≥1}\\{x+y≤3}\\{y≥2(x-3)}\end{array}\right.$,则z=2x+y的最小值为-2.

查看答案和解析>>

同步练习册答案