精英家教网 > 高中数学 > 题目详情
9.将函数$f(x)=sin({2x+φ})({|φ|<\frac{π}{2}})$的图象向左平移$\frac{π}{3}$个单位长度后,所得函数g(x)的图象关于原点对称,则函数f(x)在$[{0,\frac{π}{2}}]$的最大值为(  )
A.0B.$\frac{1}{2}$C.$\frac{{\sqrt{3}}}{2}$D.1

分析 利用y=Asin(ωx+φ)的图象变换规律,三角函数的图象的对称性求得φ的值,可得f(x)的解析式,再利用正弦函数的定义域和值域求得函数f(x)在$[{0,\frac{π}{2}}]$的最大值.

解答 解:将函数$f(x)=sin({2x+φ})({|φ|<\frac{π}{2}})$的图象向左平移$\frac{π}{3}$个单位长度后,
可得函数g(x)=sin(2x+$\frac{2π}{3}$+φ)的图象,根据所得图象关于原点对称,
可得$\frac{2π}{3}$+φ=π,∴φ=$\frac{π}{3}$,f(x)=sin(2x+$\frac{π}{3}$).
在$[{0,\frac{π}{2}}]$上,2x+$\frac{π}{3}$∈[$\frac{π}{3}$,$\frac{4π}{3}$],故当2x+$\frac{π}{3}$=$\frac{π}{2}$时,f(x)=sin(2x+$\frac{π}{3}$)取得最大值为1,
故选:D.

点评 本题主要考查y=Asin(ωx+φ)的图象变换规律,正弦函数的定义域和值域,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

19.雾霾天气对城市环境造成很大影响,按照国家环保部发布的标准:居民区的PM2.5(大气中直径小于或等于2.5微米的颗粒物)年平均浓度不得超过35微克/立方米.某市环保部门加强了对空气质量的监测,抽取某居民区监测点的20天PM2.5的24小时平均浓度的监测数据,制成茎叶图如图1:

(Ⅰ)完成如下频率分布表,并在所给的坐标系中画出(0,100)的频率分布直方图如图2;
组别PM2.5浓度(微粒、立方米)频数(天)频率
第一组(0,25]50.25
第二组(25,50]100.5
第三组(50,75]30.15
第四组(75,100]20.1
(Ⅱ)从样本中PM2.5的24小时平均浓度超过50微克/立方米的天数中,随机抽取2天,求恰好有一天PM2.5的24小时平均浓度超过75微克/立方米的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.在△ABC中,角A,B,C的对边分别为a,b,c,且b=c,2sinB=$\sqrt{3}$sinA.
(Ⅰ)求cosB的值;
(Ⅱ)若a=2,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.设等差数列{an}的前n项和为Sn,若a3+a5=4,S15=60则a20=(  )
A.4B.6C.10D.12

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知函数f(x)=|x+1-2a|+|x-a2|,a∈R.
(Ⅰ)若f(a)≤2|1-a|,求实数a的取值范围;
(Ⅱ)若关于x的不等式f(x)≤1存在实数解,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知函数f(x)=(a+1)lnx-x2,$g(x)=\frac{{{x^2}+a}}{x}$.
(Ⅰ)讨论函数f(x)的单调区间;
(Ⅱ)若函数f(x)与g(x)在(0,+∞)上的单调性正好相反.
(1)对于$?{x_1},{x_2}∈[\frac{1}{e},3]$,不等式$\frac{1}{{f({x_1})-g({x_2})}}≤\frac{1}{t-1}$恒成立,求实数t的取值范围;
(2)令h(x)=xg(x)-f(x),两正实数x1、x2满足h(x1)+h(x2)+6x1x2=6,证明0<x1+x2≤1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知双曲线x2-$\frac{{y}^{2}}{{b}^{2}}$=1(b>0)的离心率为$\sqrt{2}$,则双曲线的渐近线的夹角为(  )
A.60°B.45°C.75°D.90°

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.若集合M={y|y=x4,x∈(-1,0)},集合$N=\left\{{x|y=ln\frac{x}{x-1}}\right\}$,则下列各式中正确的是(  )
A.M?NB.N?MC.M∩N=ϕD.M=N

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知$cos({\frac{π}{4}-α})=\frac{4}{5}$,则sin2α=(  )
A.$\frac{24}{25}$B.$\frac{7}{25}$C.$±\frac{24}{25}$D.$±\frac{7}{25}$

查看答案和解析>>

同步练习册答案