精英家教网 > 高中数学 > 题目详情
19.已知$cos({\frac{π}{4}-α})=\frac{4}{5}$,则sin2α=(  )
A.$\frac{24}{25}$B.$\frac{7}{25}$C.$±\frac{24}{25}$D.$±\frac{7}{25}$

分析 根据余弦的和与差公式打开,采用两边平方,可得sin2α的值.

解答 解:由$cos({\frac{π}{4}-α})=\frac{4}{5}$,
可得:cos$\frac{π}{4}$cosα+sin$\frac{π}{4}$sinα=$\frac{4}{5}$,
则cosα+sinα=$\frac{4\sqrt{2}}{5}$,
两边平方,得1+sin2α=$\frac{32}{25}$,
则sin2α=$\frac{7}{25}$.
故选:B.

点评 本题主要考查函数值的计算,利用三角函数的倍角公式是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

9.将函数$f(x)=sin({2x+φ})({|φ|<\frac{π}{2}})$的图象向左平移$\frac{π}{3}$个单位长度后,所得函数g(x)的图象关于原点对称,则函数f(x)在$[{0,\frac{π}{2}}]$的最大值为(  )
A.0B.$\frac{1}{2}$C.$\frac{{\sqrt{3}}}{2}$D.1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知函数$f(x)=2sin(2x+φ)(|φ|<\frac{π}{2})$部分图象如图所示.
(Ⅰ)求φ值及图中x0的值;
(Ⅱ)在△ABC中,A,B,C的对边分别为a,b,c,已知$c=\sqrt{7}$,f(C)=-2,sinB=2sinA,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知实数x,y满足:$\left\{\begin{array}{l}{x≥1}\\{x+y≤3}\\{y≥2(x-3)}\end{array}\right.$,则z=2x+y的最小值为-2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知正实数a,b,c,函数f(x)=|x+a|•|x+b|.
(Ⅰ)若a=1,b=3,解关于x的不等式f(x)+x+1<0;
(Ⅱ)求证:f(1)f(c)≥16abc.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知向量$\overrightarrow{a}$=(3,1),$\overrightarrow{b}$=(x,-1),若$\overrightarrow{a}$$-\overrightarrow{b}$与$\overrightarrow{b}$共线,则x的值等于(  )
A.-3B.1C.2D.1或2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知球O的半径为1,A,B是球面上的两点,且AB=$\sqrt{3}$,若点P是球面上任意一点,则$\overrightarrow{PA}$•$\overrightarrow{PB}$的取值范围是(  )
A.[$-\frac{3}{2}$,$\frac{1}{2}$]B.[$-\frac{1}{2}$,$\frac{3}{2}$]C.[0,$\frac{1}{2}$]D.[0,$\frac{3}{2}$]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.函数f(x)=3x2+ex-2(x<0)与g(x)=3x2+ln(x+t)图象上存在关于y轴对称的点,则t的取值范围是(  )
A.(-∞,$\frac{1}{e}$)B.(-∞,e)C.(-e,$\frac{1}{e}$)D.(-$\frac{1}{e}$,e)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知函数f(x)=$\left\{\begin{array}{l}{{x}^{2}-2ax+{a}^{2}+1,x≤0}\\{{x}^{2}+\frac{2}{x}-a,x>0}\end{array}\right.$
(Ⅰ)若对于任意的x∈R,都有f(x)≥f(0)成立,求实数a的取值范围;
(Ⅱ)记函数f(x)的最小值为M(a),解关于实数a的不等式M(a-2)<M(a).

查看答案和解析>>

同步练习册答案