分析 (Ⅰ)原不等式等价于|(x+1)(x+3)|<-x-1?x+1<(x+1)(x+3)<-x-1,即可得出结论;
(Ⅱ)利用基本不等式与不等式的性质证明f(1)f(c)≥16abc.
解答 解:(Ⅰ)原不等式等价于|(x+1)(x+3)|<-x-1?x+1<(x+1)(x+3)<-x-1(2分)
$?\left\{\begin{array}{l}{x^2}+5x+4<0\\{x^2}+3x+2>0\end{array}\right.$$?\left\{\begin{array}{l}-4<x<-1\\ x<-2或x>-1\end{array}\right.$(4分)
?x∈(-4,-2),
∴解集为 (-4,-2)(5分)
(Ⅱ)∵a,b,c为正数,
所以有$\left\{\begin{array}{l}a+1≥2\sqrt{a}>0\\ b+1≥2\sqrt{b}>0\\ a+c≥2\sqrt{ac}>0\\ b+c≥2\sqrt{bc}>0\end{array}\right.$(8分)
∴$f(1)f(c)=(a+1)(b+1)(a+c)(b+c)≥2\sqrt{a}•2\sqrt{b}•2\sqrt{ac}•2\sqrt{bc}=16abc$(10分)
点评 本小题主要考查不等式的相关知识,具体涉及到绝对值不等式解法及不等式证明等内容.本小题重点考查考生的化归与转化思想.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 4985 | B. | 8185 | C. | 9970 | D. | 24555 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{π}{4}$ | B. | $\frac{π}{8}$ | C. | $1-\frac{π}{4}$ | D. | $1-\frac{π}{8}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{24}{25}$ | B. | $\frac{7}{25}$ | C. | $±\frac{24}{25}$ | D. | $±\frac{7}{25}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{4}$ | B. | $\frac{1}{2}$ | C. | 1 | D. | 2 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
| 印刷册数 (千册) | 2 | 3 | 4 | 5 | 8 |
| 单册成本 (元) | 3.2 | 2.4 | 2 | 1.9 | 1.7 |
| 印刷册数x(千册) | 2 | 3 | 4 | 5 | 8 | |
| 单册成本y(元) | 3.2 | 2.4 | 2 | 1.9 | 1.7 | |
| 模型甲 | 估计值${\stackrel{∧}{{y}_{i}}}^{(1)}$ | 2.4 | 2.1 | 1.6 | ||
| 残差${\stackrel{∧}{{e}_{i}}}^{(1)}$ | 0 | -0.1 | 0.1 | |||
| 模型乙 | 估计值 ${\stackrel{∧}{{y}_{i}}}^{(2)}$ | 2.3 | 2 | 1.9 | ||
| 残差 ${\stackrel{∧}{{e}_{i}}}^{(2)}$ | 0.1 | 0 | 0 | |||
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com