精英家教网 > 高中数学 > 题目详情
2.在边长为2的正方形ABCD内部取一点M,则满足∠AMB为锐角的概率是(  )
A.$\frac{π}{4}$B.$\frac{π}{8}$C.$1-\frac{π}{4}$D.$1-\frac{π}{8}$

分析 由∠AMB为锐角得M位于半圆外,根据几何概型的概率公式进行求解即可得到结论.

解答 解:由∠AMB为锐角得M位于半圆外,由面积比可得$P=1-\frac{π}{8}$.故选D.

点评 本题主要考查几何概型的概率公式的应用,根据几何概型的概率公式是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

12.集合A={x|x2-2x<0},B={x|x-2<0},则(  )
A.A∩B=∅B.A∩B=AC.A∪B=AD.A∪B=R

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知函数f(x)=ex,g(x)=lnx+1(x≥1),
(1)求函数h(x)=f(x-1)-g(x)(x≥1)的最小值;
(2)已知1≤y<x,求证:ex-y-1>lnx-lny;
(3)设H(x)=(x-1)2f(x),在区间(1,+∞)内是否存在区间[a,b](a>1),使函数H(x)在区间[a,b]的值域也是[a,b]?请给出结论,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知函数$f(x)=2sin(2x+φ)(|φ|<\frac{π}{2})$部分图象如图所示.
(Ⅰ)求φ值及图中x0的值;
(Ⅱ)在△ABC中,A,B,C的对边分别为a,b,c,已知$c=\sqrt{7}$,f(C)=-2,sinB=2sinA,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.在平面直角坐标系xOy中,直线l的参数方程为$\left\{\begin{array}{l}{x=5-t}\\{y=t-1}\end{array}\right.$(t为参数),在以坐标原点为极点,x轴的非负半轴为极轴的极坐标系中,圆C的极坐标方程为ρ=3,则直线l被圆C所截得弦的长度为2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知实数x,y满足:$\left\{\begin{array}{l}{x≥1}\\{x+y≤3}\\{y≥2(x-3)}\end{array}\right.$,则z=2x+y的最小值为-2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知正实数a,b,c,函数f(x)=|x+a|•|x+b|.
(Ⅰ)若a=1,b=3,解关于x的不等式f(x)+x+1<0;
(Ⅱ)求证:f(1)f(c)≥16abc.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知球O的半径为1,A,B是球面上的两点,且AB=$\sqrt{3}$,若点P是球面上任意一点,则$\overrightarrow{PA}$•$\overrightarrow{PB}$的取值范围是(  )
A.[$-\frac{3}{2}$,$\frac{1}{2}$]B.[$-\frac{1}{2}$,$\frac{3}{2}$]C.[0,$\frac{1}{2}$]D.[0,$\frac{3}{2}$]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知集合A={x∈N|1<x<log2k},若集合A中至少有4个元素,则(  )
A.k>32B.k≥32C.k>16D.k≥16

查看答案和解析>>

同步练习册答案