精英家教网 > 高中数学 > 题目详情
12.集合A={x|x2-2x<0},B={x|x-2<0},则(  )
A.A∩B=∅B.A∩B=AC.A∪B=AD.A∪B=R

分析 解不等式得集合A、B,根据交集与并集的定义判断即可.

解答 解:集合A={x|x2-2x<0}={x|0<x<2},
B={x|x-2<0}={x|x<2},
∴A∩B={x|0<x<2}=A.
故选:B.

点评 本题考查了解不等式与集合的运算问题,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

2.当x≠1且x≠0时,数列{nxn-1}的前n项和Sn=1+2x+3x2+…nxn-1(n∈N*)可以用数列求和的“错位相减法”求得,也可以由x+x2+x3+…+xn(n∈N*)按等比数列的求和公式,先求得x+x2+x3+…+xn=$\frac{x-{x}^{n+1}}{1-x}$,两边都是关于x的函数,两边同时求导,(x+x2+x3+…+xn)′=($\frac{x-{x}^{n+1}}{1-x}$)′,从而得到:Sn=1+2x+3x2+…+nxn-1=$\frac{1-(n+1){x}^{n}+n{x}^{n+1}}{(1-x)^{2}}$,按照同样的方法,请从二项展开式(1+x)n=1+${C}_{n}^{1}$x+C${\;}_{n}^{2}$x2+…+C${\;}_{n}^{n}$xn出发,可以求得,Sn=1×2×C${\;}_{n}^{1}$+2×3×C${\;}_{n}^{2}$+3×4×C${\;}_{n}^{3}$+…+n×(n+1)×C${\;}_{n}^{n}$(n≥4)的和为n(n+3)2n-2(请填写最简结果)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.设复数z满足(1-i)z=|1+$\sqrt{3}i}$|(i为虚数单位),则$\overline z$在复平面内对应的点位于(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.在△ABC中,角A,B,C的对边分别为a,b,c,且b=c,2sinB=$\sqrt{3}$sinA.
(Ⅰ)求cosB的值;
(Ⅱ)若a=2,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.设函数g(x)=ex+3x-a(a∈R,e为自然对数底数),若存在x0∈(-∞,1],使g(g(x0))=x0,则实数a的取值范围为(  )
A.(-∞,$\sqrt{e}$+$\frac{1}{2}$]B.(-∞,e+2]C.(-∞,e+$\frac{1}{2}$]D.(-∞,$\sqrt{e}$+2]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.设等差数列{an}的前n项和为Sn,若a3+a5=4,S15=60则a20=(  )
A.4B.6C.10D.12

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知函数f(x)=|x+1-2a|+|x-a2|,a∈R.
(Ⅰ)若f(a)≤2|1-a|,求实数a的取值范围;
(Ⅱ)若关于x的不等式f(x)≤1存在实数解,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知双曲线x2-$\frac{{y}^{2}}{{b}^{2}}$=1(b>0)的离心率为$\sqrt{2}$,则双曲线的渐近线的夹角为(  )
A.60°B.45°C.75°D.90°

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.在边长为2的正方形ABCD内部取一点M,则满足∠AMB为锐角的概率是(  )
A.$\frac{π}{4}$B.$\frac{π}{8}$C.$1-\frac{π}{4}$D.$1-\frac{π}{8}$

查看答案和解析>>

同步练习册答案