精英家教网 > 高中数学 > 题目详情
11.已知球O的半径为1,A,B是球面上的两点,且AB=$\sqrt{3}$,若点P是球面上任意一点,则$\overrightarrow{PA}$•$\overrightarrow{PB}$的取值范围是(  )
A.[$-\frac{3}{2}$,$\frac{1}{2}$]B.[$-\frac{1}{2}$,$\frac{3}{2}$]C.[0,$\frac{1}{2}$]D.[0,$\frac{3}{2}$]

分析 建立空间坐标系,设出A,B的坐标,设P(x,y,z),用x,y,z表示出$\overrightarrow{PA}•\overrightarrow{PB}$,根据x,y的范围求出答案.

解答 解:∵OA=OB=1,AB=$\sqrt{3}$,
∴cos∠AOB=$\frac{1+1-3}{2×1×1}$=-$\frac{1}{2}$,即∠AOB=120°,
以球心O为原点,以平面AOB的垂线为竖轴建立空间坐标系,
设A(1,0,0),B(-$\frac{1}{2}$,$\frac{\sqrt{3}}{2}$,0),P(x,y,z)
则$\overrightarrow{PA}$=(1-x,-y,-z),$\overrightarrow{PB}$=(-$\frac{1}{2}$-x,$\frac{\sqrt{3}}{2}$-y,-z),且x2+y2+z2=1,
∴$\overrightarrow{PA}•\overrightarrow{PB}$=(1-x)(-$\frac{1}{2}$-x)-y($\frac{\sqrt{3}}{2}$-y)+z2=x2+y2+z2-$\frac{1}{2}$(x+$\sqrt{3}$y)-$\frac{1}{2}$=$\frac{1}{2}$-$\frac{1}{2}$(x+$\sqrt{3}$y).
∵P(x,y,z)是球上的一点,∴x2+y2≤1,
设m=x+$\sqrt{3}y$,则当直线x+$\sqrt{3}$y-m=0与圆x2+y2=1相切时,m取得最值,
∴$\frac{|m|}{2}$=1,∴-2≤m≤2,
∴当m=-2时,$\overrightarrow{PA}•\overrightarrow{PB}$取得最大值$\frac{3}{2}$,当m=2时,$\overrightarrow{PA}•\overrightarrow{PB}$取得最小值-$\frac{1}{2}$.
故选B.

点评 本题考查了向量的数量积运算,使用坐标法求解简化计算,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

1.已知双曲线x2-$\frac{{y}^{2}}{{b}^{2}}$=1(b>0)的离心率为$\sqrt{2}$,则双曲线的渐近线的夹角为(  )
A.60°B.45°C.75°D.90°

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.在边长为2的正方形ABCD内部取一点M,则满足∠AMB为锐角的概率是(  )
A.$\frac{π}{4}$B.$\frac{π}{8}$C.$1-\frac{π}{4}$D.$1-\frac{π}{8}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知$cos({\frac{π}{4}-α})=\frac{4}{5}$,则sin2α=(  )
A.$\frac{24}{25}$B.$\frac{7}{25}$C.$±\frac{24}{25}$D.$±\frac{7}{25}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.若变量x,y满足约束条件$\left\{\begin{array}{l}{x≥0}\\{x+y≤1}\\{x-y≤1}\end{array}\right.$,则$\frac{y}{x+2}$的最大值为(  )
A.$\frac{1}{4}$B.$\frac{1}{2}$C.1D.2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.在(1+x)+(1+x)2+(1+x)3+…+(1+x)11的展开式中,x2的系数是(  )
A.55B.66C.165D.220

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.某印刷厂为了研究印刷单册书籍的成本y(单位:元)与印刷册数x(单位:千册)之间的关系,在印制某种书籍时进行了统计,相关数据见下表:
印刷册数 (千册)23458
单册成本 (元)3.22.421.91.7
根据以上数据,技术人员分别借助甲、乙两种不同的回归模型,得到两个回归方程,方程甲:${\stackrel{∧}{y}}^{(1)}$=$\frac{4}{x}+1.1$,方程乙:$\stackrel{{∧}^{(2)}}{y}$=$\frac{6.4}{x^2}+1.6$.
(1)为了评价两种模型的拟合效果,完成以下任务.
①完成下表(计算结果精确到0.1);
印刷册数x(千册)23458
单册成本y(元)3.22.421.91.7
模型甲估计值${\stackrel{∧}{{y}_{i}}}^{(1)}$  2.42.1 1.6
残差${\stackrel{∧}{{e}_{i}}}^{(1)}$ 0-0.1 0.1
模型乙估计值 ${\stackrel{∧}{{y}_{i}}}^{(2)}$ 2.321.9 
残差 ${\stackrel{∧}{{e}_{i}}}^{(2)}$ 0.100 
②分别计算模型甲与模型乙的残差平方和Q1及Q2,并通过比较Q1,Q2的大小,判断哪个模型拟合效果更好.
(2)该书上市之后,受到广大读者热烈欢迎,不久便全部售罄,于是印刷厂决定进行二次印刷.根据市场调查,新需求量为8千册(概率0.8)或10千册(概率0.2),若印刷厂以每册5元的价格将书籍出售给订货商,问印刷厂二次印刷8千册还是10千册能获得更多利润?(按(1)中拟合效果较好的模型计算印刷单册书的成本)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.若多项式x2+x10=a0+a1(x+1)+a2(x+1)2+…+a9(x+1)9+a10(x+1)10,则a8=45.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知f(x)=3cosx-4sinx,x∈[0,π],则f(x)的值域为[-5,3].

查看答案和解析>>

同步练习册答案