精英家教网 > 高中数学 > 题目详情
7.设函数f(x)=x-|x+2|-|x-3|-m,若?x∈R,$\frac{1}{m}$-4≥f(x)恒成立.
(1)求m的取值范围;
(2)求证:log(m+1)(m+2)>log(m+2)(m+3)

分析 (1)由?x∈R,$\frac{1}{m}$-4≥f(x)恒成立,可得m+$\frac{1}{m}$≥x-|x+2|-|x-3|+4,求出右边的最大值,即可求m的取值范围;
(2)利用对数的性质及基本不等式,即可证明结论.

解答 (1)解:∵?x∈R,$\frac{1}{m}$-4≥f(x)恒成立,
∴m+$\frac{1}{m}$≥x-|x+2|-|x-3|+4,
令g(x)=x-|x+2|-|x-3|+4,则g(x)在(-∞,3)上是增函数,
(3,+∞)上是减函数,g(x)max=g(3)=2,
∴m+$\frac{1}{m}$≥2,∴m>0;
(2)证明:m>0,可得m+3>m+2>m+1>1,
则lg(m+3)>lg(m+2)>lg(m+1)>lg1=0,
∵lg(m+1)lg(m+3)<$[\frac{lg(m+1)+lg(m+3)}{2}]^{2}$=$\frac{[lg(m+1)(m+3)]^{2}}{4}$<lg2(m+2),
∴$\frac{lg(m+2)}{lg(m+1)}>\frac{lg(m+3)}{lg(m+2)}$,
∴log(m+1)(m+2)>log(m+2)(m+3).

点评 本题考查恒成立问题,考查函数的最值,考查对数的性质、基本不等式的运用,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

17.过双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的右顶点A作斜率为-1的直线l,该直线与双曲线的两条渐近线的交点分别为B,C.若$2\overrightarrow{AB}=\overrightarrow{BC}$,则双曲线的离心率是$\sqrt{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知函数y=f(x+1)的图象关于直线x=-1对称,且当x∈(0,+∞)时,f(x)=|log2x|,若a=f($\frac{1}{3}$),b=f(-4),c=f(2),则a,b,c之间的大小关系是(  )
A.c<b<aB.c<a<bC.b<a<cD.a<c<b

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.从1,2,3,4,5,6这6个数中,每次取出两个不同的数,分别记作a,b,可以得到lga-lgb的不同值的个数是(  )
A.28B.26C.24D.22

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.当x≠1且x≠0时,数列{nxn-1}的前n项和Sn=1+2x+3x2+…nxn-1(n∈N*)可以用数列求和的“错位相减法”求得,也可以由x+x2+x3+…+xn(n∈N*)按等比数列的求和公式,先求得x+x2+x3+…+xn=$\frac{x-{x}^{n+1}}{1-x}$,两边都是关于x的函数,两边同时求导,(x+x2+x3+…+xn)′=($\frac{x-{x}^{n+1}}{1-x}$)′,从而得到:Sn=1+2x+3x2+…+nxn-1=$\frac{1-(n+1){x}^{n}+n{x}^{n+1}}{(1-x)^{2}}$,按照同样的方法,请从二项展开式(1+x)n=1+${C}_{n}^{1}$x+C${\;}_{n}^{2}$x2+…+C${\;}_{n}^{n}$xn出发,可以求得,Sn=1×2×C${\;}_{n}^{1}$+2×3×C${\;}_{n}^{2}$+3×4×C${\;}_{n}^{3}$+…+n×(n+1)×C${\;}_{n}^{n}$(n≥4)的和为n(n+3)2n-2(请填写最简结果)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.在△ABC中,角A,B,C所对的边分别为a,b,c,且满足b=acosC+$\frac{\sqrt{3}}{3}$csinA.
(Ⅰ)求角A的大小;
(Ⅱ)若△ABC且的面积为$\sqrt{3}$,且AB边上的中线长为$\sqrt{2}$,求边长b,c.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.雾霾天气对城市环境造成很大影响,按照国家环保部发布的标准:居民区的PM2.5(大气中直径小于或等于2.5微米的颗粒物)年平均浓度不得超过35微克/立方米.某市环保部门加强了对空气质量的监测,抽取某居民区监测点的20天PM2.5的24小时平均浓度的监测数据,制成茎叶图如图1:

(Ⅰ)完成如下频率分布表,并在所给的坐标系中画出(0,100)的频率分布直方图如图2;
组别PM2.5浓度(微粒、立方米)频数(天)频率
第一组(0,25]50.25
第二组(25,50]100.5
第三组(50,75]30.15
第四组(75,100]20.1
(Ⅱ)从样本中PM2.5的24小时平均浓度超过50微克/立方米的天数中,随机抽取2天,求恰好有一天PM2.5的24小时平均浓度超过75微克/立方米的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.设m∈R,向量$\overrightarrow{a}$=(m+2,1),$\overrightarrow{b}$=(1,-2m),且$\overrightarrow{a}$⊥$\overrightarrow{b}$,则|$\overrightarrow{a}$+$\overrightarrow{b}$|=$\sqrt{34}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.设等差数列{an}的前n项和为Sn,若a3+a5=4,S15=60则a20=(  )
A.4B.6C.10D.12

查看答案和解析>>

同步练习册答案