精英家教网 > 高中数学 > 题目详情
2.已知圆C:(x-1)2+y2=$\frac{1}{4}$,一动圆与直线x=-$\frac{1}{2}$相切且与圆C外切.
(Ⅰ)求动圆圆心P的轨迹T的方程;
(Ⅱ)若经过定点Q(6,0)的直线l与曲线T相交于A、B两点,M是线段AB的中点,过M作x轴的平行线与曲线T相交于点N,试问是否存在直线l,使得NA⊥NB,若存在,求出直线l的方程,若不存在,说明理由.

分析 (Ⅰ)利用直接法,求动圆圆心P的轨迹T的方程;
(Ⅱ)由题意,设直线l的方程为x=my+6,联立抛物线方程,利用$\overrightarrow{NA}•\overrightarrow{NB}$=0,代入化简可得(m2+6)(3m2-2)=0,即可得出结论.

解答 解:(Ⅰ)设P(x,y),则由题意,|PC|-(x+$\frac{1}{2}$)=$\frac{1}{2}$,
∴$\sqrt{(x-1)^{2}+{y}^{2}}$=x+1,
化简可得动圆圆心P的轨迹T的方程为y2=4x;
(Ⅱ)设A(x1,y1),B(x2,y2).
由题意,设直线l的方程为x=my+6,联立抛物线方程可得y2-4my-24=0,
∴y1+y2=4m,y1y2=-24①,
∴x1+x2=4m2+12②,x1x2=36③
假设存在N(x0,y0),使得NA⊥NB,则y0=$\frac{{y}_{1}+{y}_{2}}{2}$=2m④,
∴x0=m2⑤,
∵$\overrightarrow{NA}•\overrightarrow{NB}$=0,
∴代入化简可得(m2+6)(3m2-2)=0,
∴m=$±\frac{\sqrt{6}}{3}$,
∴存在直线l:x=$±\frac{\sqrt{6}}{3}$y+6,使得NA⊥NB,

点评 本题考查轨迹方程,考查直线与抛物线位置关系的运用,考查向量知识,考查学生的计算能力,难度大.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

12.在△ABC中,角A,B,C所对的边分别为a,b,c,且满足b=acosC+$\frac{\sqrt{3}}{3}$csinA.
(Ⅰ)求角A的大小;
(Ⅱ)若△ABC且的面积为$\sqrt{3}$,且AB边上的中线长为$\sqrt{2}$,求边长b,c.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知点P(x,y)在不等式组$\left\{\begin{array}{l}2x-y+a≥0\\ 3x+y-3≤0\end{array}\right.$(a为常数)表示的平面区域上运动,若z=4x+3y的最大值为8,则a=2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知曲线C的参数方程是$\left\{\begin{array}{l}{x=\frac{{t}^{2}}{4}}\\{y=t}\end{array}\right.$,直线l的方程是x=ky+1(k∈R).
(Ⅰ)求曲线C的普通方程;
(Ⅱ)若直线l与曲线C相交所得的弦长是4,求实数k的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.设等差数列{an}的前n项和为Sn,若a3+a5=4,S15=60则a20=(  )
A.4B.6C.10D.12

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知复数(1+i)z=1-i(i是虚数单位),则z的共轭复数的虚部是(  )
A.iB.1C.-iD.-1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知函数f(x)=(a+1)lnx-x2,$g(x)=\frac{{{x^2}+a}}{x}$.
(Ⅰ)讨论函数f(x)的单调区间;
(Ⅱ)若函数f(x)与g(x)在(0,+∞)上的单调性正好相反.
(1)对于$?{x_1},{x_2}∈[\frac{1}{e},3]$,不等式$\frac{1}{{f({x_1})-g({x_2})}}≤\frac{1}{t-1}$恒成立,求实数t的取值范围;
(2)令h(x)=xg(x)-f(x),两正实数x1、x2满足h(x1)+h(x2)+6x1x2=6,证明0<x1+x2≤1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知正项数列{an}的首项a1=1,前n项和为Sn,若以(an,Sn)为坐标的点在曲线y=$\frac{1}{2}$x(x+1)上,则数列{an}的通项公式为an=n.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知椭圆C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$(a>b>0)的离心率$e=\frac{{\sqrt{2}}}{2}$,且与直线l:y=x+3相切.
(Ⅰ)求椭圆的标准方程;
(Ⅱ)过椭圆上点A(2,1)作椭圆的弦AP,AQ,若AP,AQ的中点分别为M,N,若MN平行于l,则OM,ON斜率之和是否为定值?

查看答案和解析>>

同步练习册答案