精英家教网 > 高中数学 > 题目详情
已知△ABC的三个内角分别为A,B,C,向量
m
=(sinB,1-cosB)
与向量
n
=(2,0)
夹角的余弦角为
1
2

(1)求角B的大小;
(2)求sinA+sinC的取值范围.
(Ⅰ)∵m=(sinB,1-cosB),n=(2,0),
cos<m,n>=
m•n
|m|•|n|
=
1
2
.
(2分)
2sinB
2
2-2cosB
=
1
2
.
∴2cos2B-cosB-1=0.
解得cosB=-
1
2
或cosB=1
(舍)∵0<B<π∴B=
3
.
(6分)
(Ⅱ)由(Ⅰ)可知A+C=
π
3

sinA+sinC=sinA+sin(
π
3
-A)=
1
2
sinA+
3
2
cosA=sin(A+
π
3
).
(9分)
0<A<
π
3
,∴
π
3
<A+
π
3
3
.

sin(A+
π
3
)∈(
3
2
,1].
sinA+sincC∈(
3
2
,1].
(13分)
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知△ABC的三个顶点的A、B、C及平面内一点P满足
PA
+
PB
+
PC
=
AB
,下列结论中正确的是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知△ABC的三个顶点A、B、C及平面内一点P,若
PA
+
PB
+
PC
=
AB
,则点P与△ABC的位置关系是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知△ABC的三个顶点ABC及平面内一点P满足:
PA
+
PB
+
PC
=
0
,若实数λ满足:
AB
+
AC
=λ
AP
,则λ的值为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)已知△ABC的三个顶点坐标分别为A(1,3)、B(3,1)、C(-1,0),求BC边上的高所在的直线方程.
(2)过椭圆
x2
16
+
y2
4
=1
内一点M(2,1)引一条弦,使得弦被M点平分,求此弦所在的直线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知△ABC的三个顶点A,B,C及平面内一点P满足:
PA
+
PB
+
PC
=
0
,若实数λ 满足:
AB
+
AC
AP
,则λ的值为(  )
A、3
B、
2
3
C、2
D、8

查看答案和解析>>

同步练习册答案