已知椭圆
=1(a>b>0),点P
在椭圆上.
(1)求椭圆的离心率;
(2)设A为椭圆的左顶点,O为坐标原点.若点Q在椭圆上且满足AQ=AO,求直线OQ的斜率的值.
科目:高中数学 来源: 题型:解答题
已知抛物线
.
(1)若圆心在抛物线
上的动圆,大小随位置而变化,但总是与直线
相切,求所有的圆都经过的定点坐标;
(2)抛物线
的焦点为
,若过
点的直线与抛物线相交于
两点,若
,求直线
的斜率;
(3)若过
正半轴上
点的直线与该抛物线交于
两点,
为抛物线上异于
的任意一点,记
连线的斜率为
试求满足
成等差数列的充要条件.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆
的两焦点在
轴上, 且两焦点与短轴的一个顶点的连线构成斜边长为2的等腰直角三角形
(1)求椭圆的方程;
(2)过点
的动直线
交椭圆C于A、B两点,试问:在坐标平面上是否存在一个定点Q,使得以AB为直径的圆恒过点Q?若存在求出点Q的坐标;若不存在,请说明理由
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆C:
=1(a>b>0)的离心率为
,F为椭圆的右焦点,M、N两点在椭圆C上,且
=λ
(λ>0),定点A(-4,0).
(1)求证:当λ=1时,
⊥
;
(2)若当λ=1时,有
·
=
,求椭圆C的方程..
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
设定圆
,动圆
过点
且与圆
相切,记动圆
圆心
的轨迹为
.
(1)求轨迹
的方程;
(2)已知
,过定点
的动直线
交轨迹
于
、
两点,
的外心为
.若直线
的斜率为
,直线
的斜率为
,求证:
为定值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知直线l经过点(1,0)且一个方向向量d=(1,1).椭圆C:
=1(m>1)的左焦点为F1.若直线l与椭圆C交于A,B两点,满足
·
=0,求实数m的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com