已知抛物线
.
(1)若圆心在抛物线
上的动圆,大小随位置而变化,但总是与直线
相切,求所有的圆都经过的定点坐标;
(2)抛物线
的焦点为
,若过
点的直线与抛物线相交于
两点,若
,求直线
的斜率;
(3)若过
正半轴上
点的直线与该抛物线交于
两点,
为抛物线上异于
的任意一点,记
连线的斜率为
试求满足
成等差数列的充要条件.
(1)
;(2)
;(3)直线
与
轴相垂直
解析试题分析:(1)本题考查抛物线的定义,由于直线
是已知抛物线的的准线,而圆心在抛物线上的圆既然与准线相切,则它必定过抛物线的焦点,所以所有的圆必过抛物线的焦点,即定点
;(2)这是直线与抛物线相交问题,设如设
,
,则
,两式相减有
,则
,下面就是要求
或
,为此,我们设直线
方程为
,把它与抛物线方程联立方程组,消去
,就可得到关于
的方程,可得
,
,只是里面含有
,这里解题的关键就是已知条件
怎样用?实际上有这个条件可得
,这样与刚才的
,
合起来就能求出
;(3)设
,
成等差数列即
,仿照(2)此式为
①,由于直线
可能与
轴垂直,但不会与
轴垂直,设直线
的方程为
,代入抛物线方程消去
得关于
的二次方程,可得
,这样①式可化为
,从而得到
,即直线
的方程为
,与
轴垂直.
试题解析:(1) 由定义可得定点(1,0);(4分)
(2)设
,由
,得
(5分)
由方程组
,得![]()
得
(7分)联立上述方程求得:
.(9分)
(3)(理)设直线
的方程为
,代入
,得:
,设
,则
(11分)
若![]()
,即![]()
有
,即:![]()
由此得:
,
,
(15分)
所以当直线
的方程为
时,也就是
成立的充要条件是直线
与
轴相垂直。(16分)
考点:(1)抛物线的定义;(2)直线和与抛物线相交与向量的应用;(3)圆锥曲线综
科目:高中数学 来源: 题型:解答题
巳知椭圆
的离心率是
.
⑴若点P(2,1)在椭圆上,求椭圆的方程;
⑵若存在过点A(1,0)的直线
,使点C(2,0)关于直线
的对称点在椭圆上,求椭圆的焦距的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆
:
的离心率为
,右焦点为(
,0).
(1)求椭圆
的方程;
(2)若过原点
作两条互相垂直的射线,与椭圆交于
,
两点,求证:点
到直线
的距离为定值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆C:
(
)的短轴长为2,离心率为![]()
(1)求椭圆C的方程
(2)若过点M(2,0)的引斜率为
的直线与椭圆C相交于两点G、H,设P为椭圆C上一点,且满足
(
为坐标原点),当
时,求实数
的取值范围?
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
椭圆
以双曲线
的实轴为短轴、虚轴为长轴,且与抛物线
交于
两点.
(1)求椭圆
的方程及线段
的长;
(2)在
与
图像的公共区域内,是否存在一点
,使得
的弦
与
的弦
相互垂直平分于点
?若存在,求点
坐标,若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,在平面直角坐标系xOy中,M、N分别是椭圆
=1的顶点,过坐标原点的直线交椭圆于P、A两点,其中P在第一象限,过P作x轴的垂线,垂足为C,连结AC,并延长交椭圆于点B,设直线PA的斜率为k.![]()
(1)若直线PA平分线段MN,求k的值;
(2)当k=2时,求点P到直线AB的距离d;
(3)对任意k>0,求证:PA⊥PB..
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆
=1(a>b>0)的离心率为
,短轴的一个端点为M(0,1),直线l:y=kx-
与椭圆相交于不同的两点A、B.
(1)若AB=
,求k的值;
(2)求证:不论k取何值,以AB为直径的圆恒过点M.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆
=1(a>b>0),点P
在椭圆上.
(1)求椭圆的离心率;
(2)设A为椭圆的左顶点,O为坐标原点.若点Q在椭圆上且满足AQ=AO,求直线OQ的斜率的值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆
+y2=1的左顶点为A,过A作两条互相垂直的弦AM、AN交椭圆于M、N两点.
(1)当直线AM的斜率为1时,求点M的坐标;
(2)当直线AM的斜率变化时,直线MN是否过x轴上的一定点?若过定点,请给出证明,并求出该定点;若不过定点,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com