精英家教网 > 高中数学 > 题目详情
(2006•重庆二模)如果函数f(x)满足:对任意实数a,b都有f(a+b)=f(a)f(b),且f(1)=2,则
f(2)
f(1)
+
f(5)
f(3)
+
f(9)
f(6)
+
f(14)
f(10)
+…+
f(1274)
f(1225)
=
250-2
250-2
分析:令a=n,b=1,可得{f(n)}组成以2为首项,2为公比的等比数列,在利用等比数列的求和公式,即可得到结论.
解答:解:根据题意,令a=n,b=1,则
∵f(a+b)=f(a)f(b),且f(1)=2
∴f(n+1)=2f(n)
∴{f(n)}组成以2为首项,2为公比的等比数列
f(2)
f(1)
+
f(5)
f(3)
+
f(9)
f(6)
+
f(14)
f(10)
+…+
f(1274)
f(1225)
=2+22+23+…+249=250-2
故答案为:250-2
点评:本题考查抽象函数,考查等比数列的判定与求和,考查学生的计算能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2006•重庆二模)设复数z=
3
+i
2
,那么
1
z
等于(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2006•重庆二模)在△ABC中,lgsinA,lgsinB,lgsinC成等差数列,是三边a,b,c成等比数列的(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2006•重庆二模)已知f(x)是定义在R的奇函数,当x<0时,f(x)=(
1
2
x,那么f-1(0)+f-1(-8)的值为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2006•重庆二模)若抛物线的顶点坐标是M(1,0),准线l的方程是x-2y-2=0,则抛物线的焦点坐标为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2006•重庆二模)某商店计划投入资金20万元经销甲或乙两种商品,已知经销甲商品与乙商品所获得的总利润分别为P和Q(万元),且它们与投入资金x(万元)的关系是:P=
x
4
,Q=
a
2
x
(a>0);若不管资金如何投放,经销这两种商品或其中之一种所获得的利润总不小于5万元,则a的最小值应为(  )

查看答案和解析>>

同步练习册答案