精英家教网 > 高中数学 > 题目详情
某人手中有5张扑克牌,其中2张为不同花色的2,3张为不同花色的A,有5次出牌机会,每次只能出一种点数的牌但张数不限,此人有多少种不同的出牌方法?
考点:排列、组合及简单计数问题
专题:排列组合
分析:根据题意,分6种情况讨论出牌的方法,①、5张牌分开出,②、2张2一起出,3张A一起出,③、2张2一起出,3张A分开出,④、2张2一起出,3张A分成2次出,⑤、2张2分开出,3张A一起出,⑥、2张2分开出,3张A分成2次出,分别计算每种情况的出牌方法数目,由分类计数原理计算可得答案.
解答: 解:根据题意,出牌的方法可以分为6种情况,
①、5张牌分开出,即5张牌进行全排列,有A55种方法,
②、2张2一起出,3张A一起出,2张2与3张A共2个元素全排列即可,有A22种方法,
③、2张2一起出,3张A分开出,2张2与3张A分开共4个元素全排列即可,有A44种方法,
④、2张2一起出,3张A分成2次出,先把3张A分为2-1的两组,再对2组3和2张A共3个元素全排列即可,有C32•A33种方法,
⑤、2张2分开出,3张A一起出,2张2分开与3张A共3个元素全排列即可,有A33种方法,
⑥、2张2分开出,3张A分成2次出,先把3张A分为2-1的两组,再对2组3和2张2分开共4个元素全排列即可,有C32•A44种方法,
因此共有出牌方法:A55+A22+A44+C32•A33+A33+C32•A44=242种.
点评:本题考查排列、组合的应用,解题的关键在于全面考虑,按一定顺序分类讨论、计算,做到不重不漏.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知α,β∈(0,
π
2
),α+β≠
π
2
a
=(sinα,sinβ)与
b
=(cos(α+β),-1),
a
b
,当tanβ取最大值时,求tan(α+β)

查看答案和解析>>

科目:高中数学 来源: 题型:

若双曲线C:mx2-y2=1(m为常数)的一条渐近线与直线l:y=-3x-1垂直,则双曲线C的焦距为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知下列命题:
①命题“?x∈R,x2+1>3x”的否定是“?x∈R,x2+1<3x”;
②已知p、q为两个命题,若“p∨q”为假命题,则“¬p∧¬q为真命题”;
③“a>2”是“a>5”的充分不必要条件;
④“若xy=0,则x=0且y=0”的逆否命题为真命题.
其中所有真命题的序号是(  )
A、①②③B、②④C、②D、④

查看答案和解析>>

科目:高中数学 来源: 题型:

已知P是椭圆
x2
12
+
y2
4
=1上不同于左顶点A、右顶点B的任意一点,记直线PA,PB的斜率分别为k1,k2,则k1•k2的值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知抛物线C的顶点在原点O,焦点与椭圆
x2
25
+
y2
9
=1
的右焦点重合.
(1)求抛物线C的方程;
(2)过点M(16,0)的直线与抛物线C相交于P,Q两点,求证:∠POQ=
π
2

查看答案和解析>>

科目:高中数学 来源: 题型:

数列{an}中,an+1=|an-4|+2(n∈N+).
(1)若a1=1,求数列前n项和Sn
(2)是否存在a1(a1≠3),使数列{an}成等差数列?若存在,求出a1,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
-x,x<0
x
,x≥0.
使关于x的方程f(x)=a(x+1)有三个不相等的实数根的充分不必要条件是(  )
A、{a|a≥
1
2
}
B、{a|
1
2
<a<1}
C、{a|0<a<
1
2
}
D、{a|0<a<
1
4
}

查看答案和解析>>

科目:高中数学 来源: 题型:

已知m∈R,向量
a
=(m,1),
b
=(-12,4),
c
=(2,-4)且
a
b
,则向量
c
在向量
a
方向上的投影为
 

查看答案和解析>>

同步练习册答案