精英家教网 > 高中数学 > 题目详情

已知函数f(x)=x3+ax,g(x)=2x2+b,它们的图象在x=1处有相同的切线.
(Ⅰ)求a,b的值;
(Ⅱ)若h(x)=f(x)-mg(x)在区间数学公式上是单调增函数,求实数m的取值范围.

解:(Ⅰ)f′(x)=3x2+a,g′(x)=4x,(2分)
由条件知,(4分)

(6分)
(Ⅱ)h(x)=f(x)-mg(x)=x3+x-2mx2
∴h′(x)=3x2-4mx+1,若h(x)在区间[,3]上为增函数,
则需h′(x)≥0,即3x2-4mx+1≥0,∴m≤.(9分)
令F(x)=,x∈[,3],
令F(x)==0,解得x=
x,F′(x)及F(x)的变化情况如下:
x[,3]
F'(x)-0+
F(x)最小值
则F(x)在区间[,3]上的最小值是F()=
因此,实数m的取值范围是m≤.(12分)
分析:(Ⅰ)根据题意,把x=1分别代入到f(x)和g(x)中,得到的函数值相等得到关于a与b的方程,分别求出f(x)和g(x)的导函数,把x=1代入导函数中,得到的导函数值相等又得到关于a与b的另一个方程,两方程联立即可求出a与b的值;
(Ⅱ)把f(x)和g(x)的解析式代入确定出h(x)的解析式,求出h(x)导函数,由h(x)在区间上为增函数,得到导函数大于等于0列出不等式,解出m小于等于一个函数,设此函数为F(x),求出F(x)导函数等于0时x的值,根据x的值分区间讨论导函数的正负,从而得到函数的单调性,根据函数的单调性得到函数的最小值,令m小于等于求出的最小值,即可得到m的取值范围.
点评:此题考查了利用导数研究曲线上过某点切线方程的斜率,以及利用导数求闭区间上函数的最值.要求学生掌握求导法则,以及不等式恒成立时满足的条件.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网已知函数f(x)=Asin(ωx+φ)(x∈R,A>0,ω>0,|φ|<
π
2
)的部分图象如图所示,则f(x)的解析式是(  )
A、f(x)=2sin(πx+
π
6
)(x∈R)
B、f(x)=2sin(2πx+
π
6
)(x∈R)
C、f(x)=2sin(πx+
π
3
)(x∈R)
D、f(x)=2sin(2πx+
π
3
)(x∈R)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•深圳一模)已知函数f(x)=
1
3
x3+bx2+cx+d
,设曲线y=f(x)在与x轴交点处的切线为y=4x-12,f′(x)为f(x)的导函数,且满足f′(2-x)=f′(x).
(1)求f(x);
(2)设g(x)=x
f′(x)
 , m>0
,求函数g(x)在[0,m]上的最大值;
(3)设h(x)=lnf′(x),若对一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•上海模拟)已知函数f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)当a=1,b=2时,求f(x)的最小值;
(2)若f(a)≥2m-1对任意0<a<b恒成立,求实数m的取值范围;
(3)设k、c>0,当a=k2,b=(k+c)2时,记f(x)=f1(x);当a=(k+c)2,b=(k+2c)2时,记f(x)=f2(x).
求证:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中数学 来源:上海模拟 题型:解答题

已知函数f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)当a=1,b=2时,求f(x)的最小值;
(2)若f(a)≥2m-1对任意0<a<b恒成立,求实数m的取值范围;
(3)设k、c>0,当a=k2,b=(k+c)2时,记f(x)=f1(x);当a=(k+c)2,b=(k+2c)2时,记f(x)=f2(x).
求证:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中数学 来源:深圳一模 题型:解答题

已知函数f(x)=
1
3
x3+bx2+cx+d
,设曲线y=f(x)在与x轴交点处的切线为y=4x-12,f′(x)为f(x)的导函数,且满足f′(2-x)=f′(x).
(1)求f(x);
(2)设g(x)=x
f′(x)
 , m>0
,求函数g(x)在[0,m]上的最大值;
(3)设h(x)=lnf′(x),若对一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求实数t的取值范围.

查看答案和解析>>

同步练习册答案