精英家教网 > 高中数学 > 题目详情
已知f(x)=
x2-6x-3x+1
,g(x)=x3-3a2x-2a(a≥1),且它们定义域均为[0,1]
(1)求函数f(x)的最小值;
(2)判断函数g(x)的单调性并予以证明;
(3)若对任意t∈[0,1],总有g(x)≤f(t)在x∈[0,1]时恒成立,求a的取值范围.
分析:(1)先求导函数,确定函数在定义域上为减函数,从而可知x=1时,函数f(x)有最小值;
(2)先求导函数,根据函数定义域为[0,1],a≥1,可得函数g(x)的单调减区间;
(3)由(1)知,函数f(x)的最小值为-4,所以问题等价为 x3-3a2x-2a≤-4(a≥1),在x∈[0,1]时恒成立  
由(2)知,x=0时,函数g(x)取得最大值,从而-2a≤-4,故得解.
解答:解:(1)由题意,f/(x)= 
x2+2x-3
(x+1)2

f/(x)=
x2+2x-3
(x+1)2
=0
得x=-3或x=1
∵函数定义域为[0,1]
∴x=1时,函数f(x)的最小值-4;
(2)g′(x)=3x2-3a2=3(x+a)(x-a)
∵函数定义域为[0,1],a≥1
∴函数g(x)的单调减区间是[0,1],
(3)由(1)知,函数f(x)的最小值为-4,所以问题等价为 x3-3a2x-2a≤-4(a≥1),在x∈[0,1]时恒成立  
由(2)知,x=0时,函数g(x)取得最大值,所以-2a≤-4,故a≥2.
点评:本题以函数为依托,考查函数的单调性,考查函数的最值,考查了恒成立问题,关键是掌握最值法的运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知f(x)=x2-(a+
1
a
)x+1

(Ⅰ)当a=
1
2
时,解不等式f(x)≤0;
(Ⅱ)若a>0,解关于x的不等式f(x)≤0.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=
x2(x>0)
e(x=0)
0(x<0)
,则f{f[f(-2)]}=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=
x2,x>0
f(x+1),x≤0
则f(2)+f(-1)
=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

若函数f(x)对定义域中任意x,均满足f(x)+f(2a-x)=2b,则称函数y=f(x)的图象关于点(a,b)对称;
(1)已知f(x)=
x2-mx+1x
的图象关于点(0,1)对称,求实数m的值;
(2)已知函数g(x)在(-∞,0)∪(0,+∞)上的图象关于点(0,1)对称,且当x∈(0,+∞)时,g(x)=-2x-n(x-1),求函数g(x)在x∈(-∞,0)上的解析式;
(3)在(1)(2)的条件下,若对实数x<0及t>0,恒有g(x)+tf(t)>0,求正实数n的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=x2,g(x)=(
1
2
)x-m
,若对任意x1∈[0,2],存在x2∈[1,2],使得f(x1)≥g(x2),则实数m的取值范围是
m
1
4
m
1
4

查看答案和解析>>

同步练习册答案