精英家教网 > 高中数学 > 题目详情
8.图为一简单组合体,其底面ABCD为正方形,PD⊥平面ABCD,EC∥PD,且PD=AD=2EC=2
(Ⅰ)求证:AC∥平面PBE
(Ⅱ)求平面PBE与平面PAD夹角的余弦值.

分析 (Ⅰ)连接AC,与BD相交于O,取PB的中点H,连接HE,HO,证明四边形OCEH是平行四边形,可得OC∥HE,即可证明AC∥平面PBE
(Ⅱ)建立如图所示的坐标系,求出平面PAD的法向量、平面PBE的法向量,即可求平面PBE与平面PAD夹角的余弦值.

解答 (Ⅰ)证明:连接AC,与BD相交于O,取PB的中点H,连接HE,HO,
∵HO是△BDP的中位线,
∴OH∥PD,OH=$\frac{1}{2}$PD,
∵CE∥PD,CE=$\frac{1}{2}$PD,
∴OH∥CE,OH=CE,
∴四边形OCEH是平行四边形,
∴OC∥HE,
∵HE?平面PBE,OC?平面PBE,
∴AC∥平面PBE;
(Ⅱ)解:建立如图所示的坐标系,则D(0,0,0),C(0,2,0),B(2,2,0),P(0,0,2),E(0,2,1),
∴$\overrightarrow{DC}$=(0,2,0)是平面PAD的法向量,
设平面PBE的法向量为$\overrightarrow{n}$=(x,y,z),则
∵$\overrightarrow{BP}$=(-2,-2,2),$\overrightarrow{BE}$=(-2,0,1),
∴$\left\{\begin{array}{l}{-2x-2y+2z=0}\\{-2x+z=0}\end{array}\right.$,
取z=1,则$\overrightarrow{n}$=($\frac{1}{2}$,$\frac{1}{2}$,1),
∴平面PBE与平面PAD夹角的余弦值|$\frac{1}{2×\frac{\sqrt{6}}{2}}$|=$\frac{\sqrt{6}}{6}$

点评 本题考查线面平行的判定,考查平面PBE与平面PAD夹角的余弦值,正确证明四边形OCEH是平行四边形、求出平面的法向量是关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

18.已知函数f(x)=$\left\{\begin{array}{l}1,x为有理数\\ 0,x为无理数\end{array}$,给出下列命题:
①函数f(x)为偶函数;
②函数f(x)是周期函数; 
③存在xi(i=1,2,3),使得(xi,f(xi))为顶点的三角形是等边三角形;
④存在xi(i=1,2,3),使得(xi,f(xi))为顶点的三角形是等腰直角三角形.
其中的真命题是①②③(填上你认为正确的所有命题的序号)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.己知f(x)=x3-ax在[1,+∞)上是单调增函数,则a的取值范围是(  )
A.(3,+∞)B.(1,3)C.(-∞,3)D.(-∞,3]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.若复数z=a+bi(i为虚数单位,a,b∈R)在复平面内对应点为Z(a,b),O为坐标原点,将实轴非负半轴绕点O逆时针旋转到OZ,转过的最小角叫复数z的辐角主值,记作arg(z),则arg($\frac{2}{1-i}$)的值为(  )
A.$\frac{π}{4}$B.$\frac{3π}{4}$C.$\frac{5π}{4}$D.$\frac{7π}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.为了考察是否喜欢运动与性别之间的关系,得到一个2×2列联表,经计算得K2=6.679,则有99%以上的把握认为是否喜欢运动与性别有关系.
本题可以参考独立性检验临界值表
P(K2≥k) 0.50.40 0.25 0.15 0.10 0.05 0.025 0.010 0.005 0.001 
 k0.455 0.708 1.323 2.072 2.706 3.841 5.024 6.535 7.879 10.
828

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.定义运算“?”,两个实数a,b的“a?b”运算如图所示,若输入a=2cos$\frac{2015π}{3}$b=2,则输出P的值为(  )
A.-2B.0C.2D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.为了解某校学生的视力情况,采用随机抽样的方式从该校的A、B两班中各抽5名学生进行视力检测,检测的数据如下:
A班5名学生的视力检测结果:4.3,5.1,4.6,4.1,4.9
B班5名学生的视力检测结果:5.1,4.9,4.0,4.5,4.0
(1)分别计算两组数据的平均数,从计算结果看,哪个班的学生视力较好?
(2)由数据判断哪个班的5名学生视力方差较大?(结论不要求证明)
(3)现从A班的上述5名学生随机选取3名学生,求恰好两名学生的视力大于4.6的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.如图,$\overrightarrow{OC}=2\overrightarrow{OP}$,$\overrightarrow{AB}=2\overrightarrow{AC}$,$\overrightarrow{OM}=m\overrightarrow{OB}$,$\overrightarrow{ON}=n\overrightarrow{OA}$,若m=$\frac{3}{8}$,那么n=(  )
A.$\frac{1}{2}$B.$\frac{2}{3}$C.$\frac{3}{4}$D.$\frac{4}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知抛物线y2=4x的焦点为F,准线为l,过抛物线上一点P作PE⊥l于E,若直线EF的一个方向向量为(1,$\sqrt{3}$),则|PF|=4.

查看答案和解析>>

同步练习册答案