精英家教网 > 高中数学 > 题目详情
已知数列{an},a1=2a+1(a≠-1的常数),an=2an-1+n2-4n+2(n≥2,n∈N?),数列{bn}的首项,b1=a,bn=an+n2(n≥2,n∈N?).
(1)证明:{bn}从第2项起是以2为公比的等比数列并求{bn}通项公式;
(2)设Sn为数列{bn}的前n项和,且{Sn}是等比数列,求实数a的值;
(3)当a>0时,求数列{an}的最小项.
【答案】分析:(1)由题意可得,=(n≥2)及b2=a2+4=4a+4,可证{bn}从第2项起的等比数列,结合等比数列的通项公式可求;
(2)由(1)可求Sn,结合{Sn}是等比数列,及等比数列的特点可求a;
(3)由n≥2时,,可求an=,可得数列{an}的项为2a+1,4a,8a-1,16a,32a+7,显然最小项是前三项中的一项,结合a的范围可求最小项.
解答:解:由题意可得,
=(n≥2)
b2=a2+4=4a+4,
∵a≠-1,b2≠0,即{bn}从第2项起是以2为公比的等比数列
=(a+1)•2n(n≥2)

(2)由(1)求得
∵{Sn}是等比数列,
∴3a+4=0,即
(3)由已知当n≥2时,
∴an=
所以数列{an}为2a+1,4a,8a-1,16a,32a+7,显然最小项是前三项中的一项.
时,最小项为8a-1; 
时,最小项为4a;
时,最小项为2a+1.
时,最小项为4a或8a-1
时,最小项为4a或2a+1;
点评:本题主要考查了等比数列的定义在数列中应用,数列的递推公式在数列的通项求解中的应用,属于数列知识的综合应用
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知数列{an}满足
a1-1
2
+
a2-1
22
+…+
an-1
2n
=n2+n(n∈N*)

(I)求数列{an}的通项公式;
(II)求数列{an}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}满足a 1=
2
5
,且对任意n∈N*,都有
an
an+1
=
4an+2
an+1+2

(1)求证:数列{
1
an
}为等差数列,并求{an}的通项公式;
(2)令bn=an•an+1,Tn=b1+b2+b3+…+bn,求证:Tn
4
15

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}满足a 1=
2
5
,且对任意n∈N+,都有
an
an+1
=
4an+2
an+1+2

(1)求{an}的通项公式;
(2)令bn=an•an+1,Tn=b1+b2+b3+…+bn,求证:Tn
4
15

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}满足a n+an+1=
1
2
(n∈N+)
,a 1=-
1
2
,Sn是数列{an}的前n项和,则S2013=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}:,,,…,,…,其中a是大于零的常数,记{an}的前n项和为Sn,计算S1,S2,S3的值,由此推出计算Sn的公式,并用数学归纳法加以证明.

查看答案和解析>>

同步练习册答案