精英家教网 > 高中数学 > 题目详情
已知f(x)=ax-
b
x
-2lnx
,且f(e)=be-
a
e
-2
(e为自然对数的底数).
(1)求a与b的关系;
(2)若f(x)在其定义域内为增函数,求a的取值范围;
(3)证明:
ln2
22
+
ln3
32
+…+
lnn
n2
2n2-n-1
4(n+1)
(n∈N,n≥2)

(提示:需要时可利用恒等式:lnx≤x-1)
分析:(1)直接利用 f(e)=be-
a
e
-2
,可得 ae-
b
e
-2=be-
a
e
-2
,化简可得a与b的关系.
(2)求出f′(x)=
ax2-2x+a
x2
,令h(x)=ax2-2x+a.要使g(x)在(0,+∞)为增函数,h(x)≥0恒成立,即a≥
2x
x2+1
 在(0,+∞)上恒成立,而由基本不等式可得
2x
x2+1
的最大值等于1,所以a≥1.
(3)先证:lnx-x+1≤0  (x>0),可得
lnx
x
≤1-
1
x
,令x=n2
lnn
n2
1
2
(1-
1
n2
),
 可得  
ln2
22
+
ln3
32
+…+
lnn
n2
1
2
1-
1
22
+1-
1
32
+…+1-
1
n2
 )<
1
2
[n-1-(
1
2×3
+
1
3×4
+… +
1
n(n+1)
)]
=
1
2
[n-1-( 
1
2
 -
1
n+1
 )],化简即得不等式的右边.
解答:解:(1)由题意f(x)=ax-
b
x
-2lnx
f(e)=be-
a
e
-2
,∴ae-
b
e
-2=be-
a
e
-2

∴(a-b)(e+
1
e
)=0,∴a=b.
(2)由(1)知:f(x)=ax-
b
x
-2lnx
,(x>0),∴f′(x)=a+
a
x2
-
2
x
=
ax2-2x+a
x2

令h(x)=ax2-2x+a.要使g(x)在(0,+∞)为增函数,只需h(x)在(0,+∞)满足:h(x)≥0恒成立.
即ax2-2x+a≥0,a≥
2x
x2+1
 在(0,+∞)上恒成立.
又∵0<
2x
x2+1
=
2
x+
1
x
≤1,x>0,所以a≥1.
(3)证明:先证:lnx-x+1≤0  (x>0),设K(x)=lnx-x+1,则K′(x)=
1
x
-1=
1-x
x

当x∈(0,1)时,k′(x)>0,∴k(x)为单调递增函数;
当x∈(1,+∞)时,k′(x)<0,∴k(x)为单调递减函数;
∴x=1为k(x)的极大值点,∴k(x)≤k(1)=0.  即lnx-x+1≤0,∴lnx≤x-1.
由上知 lnx≤x-1,又x>0,∴
lnx
x
≤1-
1
x

∵n∈N+,n≥2,令x=n2,得
lnn2
n2
≤1-
1
n2
,∴
lnn
n2
1
2
(1-
1
n2
),
ln2
22
+
ln3
32
+…+
lnn
n2
1
2
1-
1
22
+1-
1
32
+…+1-
1
n2
 )
=
1
2
[n-1-(
1
22
+
1
32
+… +
1
n2
)]<
1
2
[n-1-(
1
2×3
+
1
3×4
+… +
1
n(n+1)
)]
=
1
2
[n-1-(
1
2
1
3
+
1
3
-
1
4
+…
1
n
-
1
n+1
 )]=
1
2
[n-1-( 
1
2
 -
1
n+1
 )]=
2n2-n-1
4(n+1)

故要证的不等式成立.
点评:本题考查利用导数研究函数的单调性,用放缩法证明不等式,体现了转化的数学思想,其中,用放缩法证明不等式 是解题的难点.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知f(x)=A
x
+B
1-x
(A>0,B>0)

(1)求f(x)的定义域;
(2)求f(x)的最大值和最小值;
(3)若g(x)=
mx-1
+
1-nx
(m>n>0)
,如何由(2)的结论求g(x)的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=ax-
1x
,g(x)=lnx,(x>0,a∈R是常数).
(1)求曲线y=g(x)在点P(1,g(1))处的切线l.
(2)是否存在常数a,使l也是曲线y=f(x)的一条切线.若存在,求a的值;若不存在,简要说明理由.
(3)设F(x)=f(x)-g(x),讨论函数F(x)的单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=ax-2
4-ax
 -1?(a>0且a≠1)

(1)求f(x)的定义域;
(2)是否存在实数a使得函数f(x)对于区间(2,+∞)上的一切x都有f(x)≥0?

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=
ax+1x-1
,x∈(1,+∞),f(2)=3
(1)求a;
(2)判断并证明函数单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•湖南模拟)已知f(x)=ax+
bx
+3-2a(a,b∈R)
的图象在点(1,f(1)处的切线与直线y=3x+1平行.
(1)求a与b满足的关系式;
(2)若a>0且f(x)≥3lnx在[1,+∞)上恒成立,求a的取值范围.

查看答案和解析>>

同步练习册答案