分析 (1)已知等式利用正弦定理化简得到c=2a,由条件可得c的值;
(2)利用余弦定理列出关系式求得cosA的值,再由同角的平方关系可得sinA,运用三角形的面积公式计算即可得到所求值.
解答 解:(1)由正弦定理,可得
sinC=2sinA.即为c=2a,
由a=$\sqrt{5}$,可得c=2$\sqrt{5}$;
(2)由余弦定理,可得
cosA=$\frac{{b}^{2}+{c}^{2}-{a}^{2}}{2bc}$=$\frac{9+20-5}{2×3×2\sqrt{5}}$=$\frac{2}{\sqrt{5}}$,
即有sinA=$\sqrt{1-co{s}^{2}A}$=$\sqrt{1-\frac{4}{5}}$=$\frac{\sqrt{5}}{5}$,
则△ABC的面积为S=$\frac{1}{2}$bcsinA=$\frac{1}{2}$×3×2$\sqrt{5}$×$\frac{\sqrt{5}}{5}$=3.
点评 此题考查了正弦、余弦定理,面积公式,熟练掌握定理是解本题的关键.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\sqrt{2}$ | B. | 2 | C. | 2$\sqrt{2}$ | D. | 4 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
| 做不到光盘 | 能做到光盘 | 合计 | |
| 男 | 45 | 10 | 55 |
| 女 | 30 | 15 | 45 |
| 合计 | 75 | 25 | 100 |
| P(K2≥k0) | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 |
| k0 | 1.323 | 2.072 | 2.706 | 3.840 | 5.024 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{{\sqrt{65}}}{3}$ | B. | $-\frac{{\sqrt{65}}}{3}$ | C. | 1 | D. | -1 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com