精英家教网 > 高中数学 > 题目详情
19.某中学推荐甲、乙、丙、丁4名同学参加A、B、C三所大学的自主招生考试,每名同学只被推荐一所大学,每所大学至少有1名推荐名额,则不推荐甲同学到A大学的推荐方案有24种.

分析 :根据题意,分2种情况讨论:1、甲单独被推荐一所大学,2、甲和某个人一起被推荐一所大学,分别求出每一种情况下的推荐方案的数目,由分类计数原理计算可得答案.

解答 解:根据题意,分2种情况讨论:
1、甲单独被推荐一所大学,
甲不能被推荐到A大学,则有2种情况,
将剩下的3人分成2、1的两组,有C32=3种情况,将分好的2组对应其他的两所大学,有A22=2种情况,
则此时有2×3×2=12种推荐方案;
2、甲和某个人一起被推荐一所大学,
先在乙、丙、丁中任取1人和甲一起被推荐,有C31=3种情况,这2人不能被推荐到A大学,则有2种情况,
将剩下的2人全排列,对应其他的两所大学,有A22=2种情况,
则此时有3×2×2=12种推荐方案;
则一共有12+12=24种推荐方案;
故答案为:24.

点评 本题考查排列、组合的运用,解题的关键是依据是否有人与甲一起被推荐分2种情况讨论.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

9.已知双曲线mx2+ny2=1的离心率为2,其中的一个焦点是抛物线y2=4x的焦点,则该双曲线的渐近线方程是(  )
A.$y=±\frac{3}{2}x$B.$y=±\frac{{\sqrt{3}}}{2}x$C.$y=±\frac{{\sqrt{3}}}{3}x$D.$y=±\sqrt{3}x$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知0<a<1,试比较|1-3a|与2a$\sqrt{a}$的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知数列{an}有a1=a,a2=p(常数p>0),对任意的正整数n,Sn=a1+a2+…+an,并有Sn满足Sn=$\frac{n({a}_{n}-{a}_{1})}{2}$.
(1)求a的值;
(2)试确定数列{an}是否是等差数列,若是,求出其通项公式,若不是,说明理由;
(3)对于数列{bn},假如存在一个常数b使得对任意的正整数n都有bn<b,且$\underset{lim}{n→∞}$bn=b,则称b为数列{bn}的“上渐近值”,令pn=$\frac{{S}_{n+2}}{{S}_{n+1}}$+$\frac{{S}_{n+1}}{{S}_{n+2}}$,求数列{p1+p2+…+pn-2n}的“上渐近值”.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.如图,平面四边形EFGH的四个顶点分别在空间四边形ABCD的四条边上,若直线EF与GH相交,则它们的交点M必在直线AC上.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.如图是函数y=sin(ωx+φ)(ω>0,0<φ<$\frac{π}{2}$)在区间[-$\frac{π}{6}$,$\frac{5π}{6}$]上的图象,将该图象向右平移m(m>0)个单位后,所得图象关于直线x=$\frac{π}{4}$对称,则m的最小值为(  )
A.$\frac{π}{12}$B.$\frac{π}{6}$C.$\frac{π}{4}$D.$\frac{π}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.夏威夷木瓜是木瓜类的名优品种,肉红味甜深受市民喜爱.某果农选取一片山地种植夏威夷木瓜,收获时,该果农随机选取果树20株作为样本测量它们每一株的果实产量(单位:kg),获得的所有数据按照区间(40,45],(45,50],(50,55],(55,60]进行分组,得到频率分布直方图如图.已知样本中产量在区间(45,50]上的果树株数是产量在区间(50,60]上的果树株数的$\frac{4}{3}$倍.
(1)求a,b的值;
(2)用直方图估算每一株果树产量的中位数和平均值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.在△ABC中,角A,B,C的对边分别为a,b,c,且a=$\sqrt{5}$,sinC=2sinA.
(1)求边c的长;
(2)若b=3,求△ABC面积S的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.一个口袋中有编号分别为0,1,2的小球各2个,从这6个球中任取2个,则取出2个球的编号数和的期望为(  )
A.1B.1.5C.2D.2.5

查看答案和解析>>

同步练习册答案