精英家教网 > 高中数学 > 题目详情

【题目】已知集合A={y|y=x2﹣2x﹣3,x∈R},B={x|log2x<﹣1},C={k|函数f(x)= 在(0,+∞)上是增函数}.
(1)求A,B,C;
(2)求A∩C,(UB)∪C.

【答案】
(1)解:A={y|y=x2﹣2x﹣3,x∈R}={y|y=(x﹣1)2﹣4}=[﹣4,+∞)

B={x|log2x<﹣1}=(0,

C={k|函数f(x)= 在(0,+∞)上是增函数}={k|1﹣4k<0}=( ,+∞)


(2)解:

UB)∪C={x|x≤0或x≥ }∪( ,+∞)=(﹣∞,0]∪( ,+∞).


【解析】1、本题考查的是,二次函数y=(x﹣1)2﹣4的值域问题开口向上有最小值[﹣4,+∞)以及对数不等式log2x<﹣1的解法。
2、本题考查的是集合的交、并、补集的不等式运算。
【考点精析】利用交、并、补集的混合运算对题目进行判断即可得到答案,需要熟知求集合的并、交、补是集合间的基本运算,运算结果仍然还是集合,区分交集与并集的关键是“且”与“或”,在处理有关交集与并集的问题时,常常从这两个字眼出发去揭示、挖掘题设条件,结合Venn图或数轴进而用集合语言表达,增强数形结合的思想方法.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,有一块边长为1(百米)的正方形区域ABCD.在点A处有一个可转动的探照灯,其照射角∠PAQ始终为45°(其中点P,Q分别在边BC,CD上),设BP=t.
(I)用t表示出PQ的长度,并探求△CPQ的周长l是否为定值;
(Ⅱ)设探照灯照射在正方形ABCD内部区域的面积S(平方百米),求S的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆C的圆心(2,0),点A(﹣1,1)在圆C上,则圆C的方程是;以A为切点的圆C的切线方程是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,在长方体ABCD﹣A1B1C1D1中,AB=AD=1,AA1=2,点P为DD1的中点.
(1)求证:直线BD1∥平面PAC
(2)求证:平面PAC⊥平面BDD1B1

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知中心在原点的双曲线C的右焦点为(2,0),右顶点为( ,0)
(1)求双曲线C的方程;
(2)若直线l:y=kx+ 与双曲线C恒有两个不同的交点A和B,且 >2(其中O为原点).求k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知f(x)是定义在R上的奇函数,当x∈[0,+∞)时,f(x)=2x+x﹣m(m为常数).
(1)求常数m的值.
(2)求f(x)的解析式.
(3)若对于任意x∈[﹣3,﹣2],都有f(k4x)+f(1﹣2x+1)>0成立,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知命题p:函数f(x)=logax在区间(0,+∞)上是单调递增函数;命题q:不等式(a﹣2)x2+2(a﹣2)x﹣4<0对任意实数x恒成立.若p∨q为真命题,且p∧q为假命题,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆O为Rt△ABC的外接圆,AB=AC,BC=4,过圆心O的直线l交圆O于P,Q两点,则 的取值范围是(
A.[﹣8,﹣1]
B.[﹣8,0]
C.[﹣16,﹣1]
D.[﹣16,0]

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知 为空间中两条不同的直线, 为空间中两个不同的平面,下列命题正确的是( )
A.若
B.若 ,则
C.若 内的射影互相平行,则
D.若 ,则

查看答案和解析>>

同步练习册答案